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Abstract
We present a novel fuzzing technique, FuzzJIT, for exposing
JIT compiler bugs in JavaScript engines, based on our insight
that JIT compilers shall only speed up the execution but never
change the execution result of JavaScript code. FuzzJIT can
activate the JIT compiler for every test case and acutely cap-
ture any execution discrepancy caused by JIT compilers. The
key to success is the design of an input wrapping template,
which proactively activates the JIT compiler and makes the
generated samples oracle-aware themselves and the oracle is
tested during execution spontaneously. We also design a set of
mutation strategies to emphasize program elements promising
in revealing JIT compiler bugs. FuzzJIT drills to JIT compil-
ers and at the same time retains the high efficiency of fuzzing.
We have implemented the design and applied the prototype
to find new JIT compiler bugs in four mainstream JavaScript
engines. In one month, ten, five, two, and 16 new bugs are ex-
posed in JavaScriptCore, V8, SpiderMonkey, and ChakraCore,
respectively, with three demonstrated exploitable.

1 Introduction

Due to the intrinsic complexity of executing Turing-complete
languages, JavaScript engines become a security weakness of
browsers and are revealed as containing a majority of browser
vulnerabilities [39]. JavaScript engines are responsible for
parsing, interpreting, compiling, and executing JavaScript
code, and their basic workflow is shown in Figure 1. The
parser and the bytecode generator work in the pipeline to trans-
form the JavaScript code into Abstract Syntax Tree (AST) and
then the bytecode. The bytecode can be executed directly by
the interpreter or compiled by the JIT compiler. The JIT com-
piler is an opt-in module that can be activated when certain
JavaScript code or function becomes hot, i.e., being invoked
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Figure 1: The general workflow of JavaScript engines.

a sufficient number of times. It comes to work on the fly,
compiles the function into assembly code, and optimizes it to
speed up the execution. Sometimes, the JIT compiler adopts
a multi-tier design, where the compilation and optimization
are promoted gradually, as with the increasing number of
execution times.

The working mechanism of the JIT compiler, especially
the optimization component, is complicated. Hence, there
are unsurprisingly many errors in its implementation. Since
JavaScript is a weak and dynamically typed language, a direct
compilation is not realistic as there are many points the type
of a variable is ambiguous. The JIT compiler does not pro-
duce a complete compilation of JavaScript code, but sticks to
the variable types mostly observed historically according to
the runtime profiling information collected by the interpreter.
For correctness, the compiled outcome has to be guarded by
type checks, and only be used on type compliance. Based on
the compilation, the optimizer intends to reduce the number
of instructions required to complete functionality. Commonly
used optimizations include control flow graph simplification,
common subexpression elimination, and dead code elimina-
tion [10]. Usually, rigorous control and data flow analyses are
required to eliminate unnecessary codes and checks safely.
The consequences become serious when some essential secu-
rity checks are removed incorrectly.

JIT compilers shall only speed up the execution; any
changes caused to the execution logic or execution results of
JavaScript code manifest JIT compiler bugs. Like logic bugs,
many JIT compiler bugs do not lead to a program crash, thus
they can be easily missed by fuzzers using crashes as the only
oracle, yet these silent bugs still provide substantial exploita-
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tion primitives. For example, the off-by-one bug [29] in the
V8 JIT compiler is exploited to execute code remotely without
triggering any crash. More details are discussed in Section 2.3.
Besides enhancing the test oracle, to automatically uncover
JIT compiler bugs with fuzzing, we must generate test cases
that can pass both the syntax and semantic checking, get ex-
ecuted, activate the JIT compiler, and intentionally reveal
bugs there. As far as we know, the only preliminary attempt
to fuzz the JIT compiler was from a researcher at Mozilla
Security, who extended Jsfunfuzz [28], a generation based
fuzzer guided by grammar rules, with a module to examine
the printouts of a test case when executed with/without JIT
activated in 2008 [27]. It was applied to fuzz Spidermonkey,
Mozilla’s JavaScript engine, whose JIT activation is designed
to be controlled with a pre-defined parameter, and detected
13 JIT bugs at that time. However, it lacks a general JIT com-
pilation triggering mechanism, and the coarse comparison
on program final states would make many bugs uncaught.
Moreover, the randomly generated test cases are restricted to
a limited search space defined by grammar rules and probabil-
ity and fail to exercise the JIT compiler thoroughly. Recently,
some advances have been made in generating syntactically
and semantically valid samples, via applying mutations to the
AST representation [1,14,17,37], a type-enriched AST repre-
sentation [12, 23], or a new intermediate representation [9],
which supports semantic mutations over control flow and data
flow, while keeping the semantic validity. However, none of
these advances is specifically designed to test JIT compil-
ers, leaving them thinly activated and tested for a long time.
Therefore, a systematically-designed effective fuzzing tool
specifically for testing JIT compilers is yet to devise.

In this work, we propose FuzzJIT, a JIT compiler fuzzing
technique, which is enhanced by a more precise test oracle
that a piece of JavaScript code should produce consistent
execution results before and after the JIT compilation, oth-
erwise an error is brought by the JIT compiler. FuzzJIT is
featured to proactively activate the JIT compiler, purpose-
fully generate promising inputs that may fail the JIT compiler,
and acutely capture those hidden and non-crashing JIT com-
piler bugs along with crashing bugs. The key to success is
the design of an input wrapping template, which makes the
generated samples themselves JIT-compiler-activating and
oracle-aware, and more importantly, the oracle is tested dur-
ing execution spontaneously. Besides, we heuristically iden-
tify five types of error-prone program elements for the JIT
compiler to deal with, and emphasize incorporating them into
the generated test cases. As a result, FuzzJIT is able to drill to
JIT compilers, unleash its power there, and, at the same time,
retain the high efficiency of fuzzing. We evaluate FuzzJIT on
four mainstream JavaScript engines, and compare it with four
state-of-the-art fuzzers. FuzzJIT stands out in detecting JIT
compiler bugs, with ten, five, two, and 16 new bugs exposed
in JavaScriptCore, V8, SpiderMonkey, and ChakraCore, re-
spectively. It also maintains higher coverage and throughput

compared with other baselines.
To summarize, our main contributions include:
• An understanding of common root causes of JIT bugs

by studying a large JIT bug corpus.
• An advantageous test case wrapping technique to trigger

JIT compilation.
• Test case generation strategies favoring program ele-

ments related to the root causes of JIT bugs.
• A novel technique to specifically detect both non-

crashing as well as crashing JIT compiler bugs for
JavaScript engines.

• A prototype implementation of our approach, FuzzJIT,
is made publicly accessible at https://github.com/S
paceNaN/fuzzjit.

• An evaluation of mainstream JavaScript engines, where
FuzzJIT exposes 33 new bugs in JIT compilers and
shows better performance and bug-finding capability
than state-of-the-art fuzzers.

2 Preliminary

2.1 JIT speculative compilation
Traditional compilers trade compilation time for producing
assembly code that executes fast at run time. For dynamically
typed languages, such as JavaScript, high-performance compi-
lation technologies cannot be directly applied due to the lack
of type information, which guides the compiler to emit assem-
bly code for instructions and allocate registers for inputs and
outputs. In the performance war, browsers compete to develop
faster JavaScript engines, and speculative compilation [25]
comes into play to make dynamic languages run faster.

Speculative compilers leverage the insights that, during
a particular execution, if a statement is executed with its
operands being certain types many times, it is highly likely
that it will be executed with the same types more times in the
future. Hence, it is worth compiling the statement into a more
efficient assembly code conditioned by the type information
to speed up the execution. We also say that the assembly
code is guarded by the speculation guard. Afterward, when
the statement is executed again, the JavaScript engine will
locate the assembly code and check if the runtime type of
the operands matches with the speculation guard, and execute
the assembly code in compliance. In case of a mismatch, the
engine will roll back to the interpreter or a lower level JIT
compiler for execution, also called a bailout. Intuitively, the
speculative compilation provides fast passes for frequently
seen input types.

Generating compilation for types a statement more fre-
quently executed tends to bring larger improvement on the
execution efficiency. To identify these types, when starting ex-
ecuting the JavaScript code, the interpreter is also responsible
for collecting the runtime profiling information of variables,
e.g., the shape of objects, the type of variables and their val-
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1 function add (a , b){
2 return a + b;
3 }

(a) A simple add operation of
two variables.

1 add (a , b) :
2 speculateGuard( isInt32 (a) ) ;
3 speculateGuard( isInt32 (b)) ;
4 Int32Add(a,b) ;
5
6 speculateGuard( condition ) :
7 if (! condition ) : Bailout

(b) The execution logic with
speculative compilation.

1 add (a , b) :
2 if ( isInt32 (a) ) :
3 if ( isInt32 (b)) :
4 Int32Add(a,b) ;
5 else if (isNumber(b)):
6 ConvertToDouble(a);
7 DoubleAdd(a,b);
8 else : Bailout
9 else if (isNumber(a)):

10 if ( isInt32 (b)) :
11 ConvertToDouble(b);
12 DoubleAdd(a,b);
13 else if (isNumber(b)):
14 DoubleAdd(a,b);
15 else : Bailout
16 ...

(c) The execution logic with in-
terpreter.

Figure 2: The add operation and its execution logic.

ues. Once a function or part of its function body is executed
sufficient times (according to the threshold set by the JIT
compiler), the engine will start the JIT compilation and opti-
mization for this function based on the frequently seen types
for type sensitive statements. It is worth noting that the pro-
filed value and type information is also indispensable during
the JIT optimization.

Now we demonstrate the speculative compilation with a
tiny example. Figure 2a shows a JavaScript add operation
of two variables, without any type indication. The logic by
the JavaScript engine to deal with the add operation with and
without speculative compilation is illustrated in Figure 2b and
Figure 2c, respectively. To ease presentation, we conceptually
name a fragment of bytecode implementing certain functional-
ity as an operation, such as Int32Add and isInt32. Without
speculative compilation, the JavaScript interpreter has to con-
sider different scenarios where a and b are of various runtime
types, since the add operation is type sensitive. It might be an
integer addition, a double addition, a string concatenation, or
arbitrary user-defined effects as JavaScript allows rewriting
an inherited function. As a result, the interpreter generates ex-
pensive control flow logic to handle different cases, as shown
in Figure 2c. However, if we observe that the operation is
frequently executed with two integers during an execution, a
shortcut to execute integer addition can be created. By trans-
forming the code into the speculative compilation as shown
in Figure 2b, the number of instructions to execute is greatly
reduced. It starts by validating the variable types at runtime
against the speculation guard. The speculateGuard oper-
ation mainly contains a conditional jump to the interpreter
or a lower level JIT compiler in case the condition does not
hold. If a and b are indeed integers, a fast pass specialized
for integer addition is taken. Otherwise, the JavaScript engine
discards the compiled code and bailouts.

2.2 JIT optimization

Based on the speculative compilation, a number of optimiza-
tions [25] can be conducted to improve the execution effi-
ciency further. Due to the implementation complexity, these
three optimizations – bounds-check elimination, redundancy
elimination, and common subexpression elimination – be-
come the principal epicenter of browser vulnerabilities today,
both in quantity and quality [10].
Bounds-check elimination. The JavaScript engine applies
bounds checks for array indexing operations, during either
interpretation or compilation. Bounds-check elimination aims
to identify and remove unnecessary ones. The key idea is to
perform value range analysis [13] on integer variables indi-
cating indices or array lengths and determine their ranges.
If the index is always within the bounds of the array size,
the checking can be safely removed to reduce the number of
instructions to execute. Bugs occur if the range of the index
is underestimated or the range of array size is overestimated.
Bounds checks could be wrongly eliminated due to such bugs,
and lead to security threats. JIT compiler vulnerabilities un-
der this category include CVE-2015-0817, CVE-2015-2712,
CVE-2017-2547, CVE-2017-0234, CVE-2018-0769, and the
String.lastIndexOf off-by-one bug [29].
Redundancy elimination. Redundancy elimination is to re-
move duplicate security guards, e.g., type validation, on a
particular control flow graph path and only keep the first one.
It is safe to do when the side effects of operations between
the kept guard and the removed guards are precisely cap-
tured, and manifested to be free. In other words, the variables
in security guards are never modified by operations in be-
tween. Precise modeling of side effects is tricky to achieve,
for example, stealthy side effects can be deliberately caused
during a function call. Bugs occur when an operation is as-
sumed to be side-effect-free but it is not. CVE-2018-4233
and CVE-2017-11802 are typical vulnerabilities caused by
inappropriate redundancy elimination.
Common subexpression elimination. Common subexpres-
sion elimination shares a similar spirit as redundancy elimina-
tion, but aims to avoid calculating the same expression more
than once. It keeps just the first and replaces the rest with a
direct copy. Again, this is safe to do only when the operations
in between are side-effect-free on expression variables. Note
that eliminating an expression also abandons its accompanied
security checks, if any. CVE-2020-9802 and CVE-2020-9983
are instances where incorrect common subexpression elimina-
tion leads to the removal of essential integer overflow checks
and further causes out-of-bound access.

2.3 Security implication

JIT compiler bugs are more exploitable than bugs in the parser
and the interpreter. To make successful exploitation, an essen-
tial step is to prepare the memory layout with desired contents
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Table 1: The vulnerabilities exploited in the past three years
in Pwn2Own.

Year Safari Chrome Edge Firefox

2021 CVE-2021-30734⊗ CVE-2021-21220□ CVE-2021-21220□ NA∇

2020 CVE-2020-9850□ NA∇ NA∇ NA∇

2019 CVE-2019-6216□

CVE-2019-6217□ NA∇ Unknown▲ CVE-2019-9813□

⊗ The bug is located in an add-on module, WebAssembly [40], of JavaScriptCore.
▲ Unknown means the demonstration is successful but the details of the bug are

unknown to the authors of this paper.
□ The bug is located in the JIT compiler of the corresponding JavaScript engine.
∇ NA means the target is not successfully exploited or no one challenges the target.

Figure 3: The number of bugs discovered respectively in
parser/interpreter and in JIT compiler in recent years.

at proper addresses via memory allocation and deallocation.
Afterward, when there are any memory corruption errors,
e.g., buffer overflow or use-after-free, the prepared memory
contents might be accidentally read or executed by another
process, whose execution will be affected or hijacked. When
it comes to the exploitation of JavaScript engine bugs, craft-
ing memory layout becomes more practical if the bugs are
triggered after the JavaScript code has been put into execution
(i.e., at the interpreting or JIT compilation stage). We can con-
veniently create variable allocation/deallocation statements in
the JavaScript code and they get easily executed before reach-
ing the bug point. However, this is not possible for parser
bugs. On the other hand, interpreter bugs are also tricky to
exploit due to the intensive security checks on the validity of
operations, such as boundary and type checking. However,
for the sake of execution efficiency, some of these checks will
be eliminated by the JIT optimizer, leaving it a security hole
and thus more exploitable.

JIT compiler bugs are also popularly exploited to ob-
tain remote code execution in security competitions, such
as Pwn2Own1 and Tianfu Cup2, and the wild. Table 1 lists all
vulnerabilities exploited to control browser targets during the

1Pwn2Own is a hacking contest held annually at the CanSecWest security
conference. Contestants are challenged to exploit widely-used software with
previously unknown vulnerabilities.

2Tianfu Cup international PWN contest is China’s “Pwn2Own”, where
all teams are required to use original vulnerabilities to hack the given subject.

1 function opt () {
2 var maxLen = 268435440; // equals to String :: KMaxLength
3 var s = "A". repeat (maxLen);
4 var i = s . lastIndexOf ("") ;
5 // Compiler: i=Range(−1, maxLen−1), Reality: i=Range(−1, maxLen)
6 i += 1;
7 // Compiler: i=Range(0, maxLen), Reality : i=Range(0, maxLen+1)
8 var buf = new Uint8Array(maxLen + 1);
9 return buf[ i ];

10 // Compiler: Bounds−check removed, Reality: Out−of−bounds access
11 }
12 print (opt () ) ; // undefined
13 %OptimizeFunctionOnNextCall(opt);
14 print (opt () ) ; // out−of−bounds access

(a) The PoC causing the out-of-bounds access.

1 case kStringIndexOf:
2 case kStringLastIndexOf :
3 return Range(−1.0, String :: KMaxLength - 1.0);

(b) The implementation root cause in typer.cc.

Figure 4: The String.lastIndexOf off-by-one bug in V8.

past three years of Pwn2Own. Among the eight successful
demonstrations, six of them exploit five vulnerabilities in JIT
compilers to obtain remote code execution permission. We
also study the JavaScript engine bugs reported by Google
Project Zero [8] from 2016 to 2021 (following the identical
setups as in [23]), and plot the number of bugs located in
the parser/interpreter and the JIT compiler, respectively, in
Figure 3. Obviously, more attention and efforts have been put
into discovering the JIT compiler bugs in recent years, and
the number of them is around four times that of the parser/in-
terpreter bugs during the past four years.

3 Motivation

JIT compiler bugs can exist in the speculative compiler or the
optimizer. They tend to cause extremely subtle errors at the
beginning and require the JIT compiler to be activated and
sometimes the fulfillment of pre-conditions on applying the
specific defective optimization. They often do not crash the
JavaScript engine and thus can be easily missed by fuzzers
using crash as the only oracle. However, neglecting these
errors will leave JavaScript engines in danger, as they could
be exploited and even take control of the engines. In the next,
we show how a bounds-check elimination bug in V8 [29]
can propagate into a more observable and threatening out-of-
bounds access bug.

The PoC causing this bug is shown in Figure 4a. The func-
tion opt is executed twice, one before the JIT compiler is
activated and one after. The line of optimization interest is
line 9 where an indexing operation is on the array buf. For se-
curity reasons, the JavaScript interpreter will check the bounds
during interpretation. When the JIT compiler gets activated, it
tests whether it is safe to skip the checking by calculating the
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Figure 5: The workflow of FuzzJIT.

range of i and comparing it with the size of buf. The value
range analysis follows the data flow of i and updates the
ranges for each calculation operation modifying it. We high-
light the value range of i after each statement execution with
code comments and report the true range and that calculated
by the JIT compiler.

We can see that i is initialized at line 4 by calling the
lastIndexOf(toSearch) of the String object. It returns
the index of the last occurrence of the string toSearch, or
-1 if not found. Here it searches for the empty string over
s, which is the longest string permitted in JavaScript and
filled with the character “A”. When searching for the empty
string, it will match at the index of maxLen, since all strings in
JavaScript end up with an empty string by definition. It means,
theoretically, the return value of any call to lastIndexOf
ranges from -1 to String::KMaxLength. However, the
value range analysis in the JIT compiler has mistakenly
estimated the upper bound as String::KMaxLength-1, as
shown in Figure 4b. To exploit this bug, i is initialized to
be String::KMaxLength such that it escapes from the com-
piler’s expectation. After adding 1 at line 6, the estimated
range of i becomes [0, maxLen], and indexing an array of
length maxLen+1 with i is considered always safe. Hence, it
becomes optimizable and the compiler removes the bounds-
check. However, the actual value of i becomes maxLen+1
after the addition and using it to index an array of maxLen+1
incurs out-of-bound access.

This bug motivates us from two aspects. First, being more
exploitable, JIT compiler bugs are extraordinarily threatening,
and detecting them before they get exploited in the wild is
of significant importance. Second, JIT compiler bugs can be
easily missed by current fuzzing approaches using crash as
the only oracle. Just like the String.lastIndexOf off-by-
one bug, they usually manifest as really subtle errors in the
beginning, and require a delicate design to make them prop-

agate and gradually bubble out as observable bugs or even
crash. In this example, to make this out-of-bounds access hap-
pen, the length of s and buf, the calling to the lastIndexOf,
as well as its parameters, and the skew adjustment to i at
line 6 must be presented exactly this way. Note that even
out-of-bounds accesses does not necessarily cause any crash.
Hence, a more effective fuzzing approach to detecting JIT
compiler bugs, particularly those not triggering crashes, is of
demanding need.

4 Approach

To uncover JIT compiler bugs during fuzzing, three challenges
have to be overcome when designing the approach: to guar-
antee that the generated samples evoke the JIT compiler, to
enlarge the possibility to reveal bugs there, and, once triggered,
to capture the bugs precisely without missing non-crashing
bugs and with low false alarms. Overall, we aim to enhance
the semantics of generated samples to be more relevant to JIT
compilers and the sensitivity of fuzzing tools to JIT compiler
errors. In the next, we first overview our approach and then
present the mitigation to these three challenges in Section 4.2,
Section 4.3, and Section 4.4, respectively.

4.1 Overview
FuzzJIT is the first systematically-designed fuzzing tool to
trigger JIT compilers, reveal and capture bugs there, and it
is devised to fulfill all above mentioned desired properties.
The key to success is a test case template, containing three
major components – a JavaScript code snippet for general
testing purposes, a JIT compiler trigger, and an oracle-aware
verifier based on execution consistency. With this template,
we can automatically enclose any JavaScript test case with the
trigger and its verifier and use it to test JIT compilers. A such
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1 function deepEquals(r1 , r2){ {
2 if ( classOf (r1) !== classOf (r2) ) return false ;
3 ...
4 }
5 function opt(param) {
6 var v0 = [0, 1.0, −1, "a" , []];
7 var v1 = new Float32Array(63895);
8 ...
9 if (param){

10 v0 = {x:0x1234, toString :v1};
11 ...
12 }
13 v0[1] = v1;
14 ...
15 return [v0, v1, ...];
16 }
17 var precheck1 = opt( true ) ;
18 for (var i=0; i<5; i++) opt( false ) ;
19 var precheck2 = opt( true ) ;
20 if ( deepEquals( precheck1, precheck2 ) ){
21 var r1 = opt( true ) ;
22 for (var i=0; i<N; i++){ // triggers JIT compiler
23 opt( false ) ;
24 }
25 var r2 = opt( true ) ;
26 if (!deepEquals(r1 , r2) ){
27 Crash() ;
28 }
29 }

Figure 6: A test generated with the input template of FuzzJIT.

generated test case is illustrated in Figure 6, where the initial
JavaScript test code includes lines 6 to 14 and apparently
will not evoke the JIT compiler when fed into the JavaScript
engine directly. In the next, we explain how it is wrapped to
trigger the JIT compiler and accurately verify the execution
consistency based on the oracle itself.

To facilitate the multi-time invocations for JIT compiler
activation, we wrap the code snippet into a function, named
opt3, as shown in line 5. Its argument is specifically designed
to test the security guard verification mechanism and will be
elaborated on in Section 4.3. Its return value is for detecting
non-crashing bugs and will be described later. The function
is explicitly called for N times with a for loop structure at
lines 22 to 24 to trigger JIT compilation. Here N can be
customized to any value according to the activation threshold
of a particular JIT compiler.

To facilitate the observation of the final state of the func-
tion after execution, opt returns an array of variables that are
modified by the code. Later, a deep comparison is conducted
to check whether the final execution states reached before and
after the JIT compilation are identical. We report finding a JIT
compiler bug on the sighting of a discrepancy. In the template,
opt is executed without the JIT compiler at line 21, and later
it is executed again at line 25 after the JIT compiler gets acti-
vated and works to compile (and optimize) the assembly code
during lines 22 to 24. More details about the bug capturing
design can be found in Section 4.4.

The overall workflow of FuzzJIT is presented in Figure 5.

3We consistently call the wrapper function opt throughout the paper.

Along with the typical fuzzing steps, it features the code
wrapping stage following the mutation. FuzzJIT specializes
the mutation module to favor elements of JIT compilation
interest, and the details are presented in Section 4.3. Then, the
sample is wrapped with a carefully designed code template
to trigger JIT compiler execution and capture non-crash JIT
bugs, and at the same time, eliminate false positives caused
by intrinsic randomness of the sample itself; the details are
introduced in Section 4.2. Afterward, when executing the
wrapped test case, the JIT compiler will be automatically
triggered and tested with the enhanced oracle. An alarm emits
whenever there is a crash or an execution inconsistency. Last,
regardless of whether an alarm is triggered or not, samples
triggering new code coverage will be trimmed and saved into
the corpus for the next round of fuzzing. The delicate design
of wrapping JIT compiler activation and oracle examination
to the JavaScript test case makes it a standalone module and
can be easily added to any basic host fuzzer.

4.2 Triggering JIT compiler

The triggering condition of different JavaScript engines dif-
fers slightly. Here, we look into four mainstream JavaScript
engines, JavaScriptCore, V8, SpiderMonkey, and ChakraCore,
which are widely adopted by end users and apply JIT com-
pilation intensively to pursue faster execution speed. Their
architectures are shown in Figure 7. Each engine consists of
a parser, an interpreter, and one or more JIT compiler tiers.
When there are multiple tiers of JIT compilers, they will be ac-
tivated progressively as the code gets hotter and hotter. Each
tier is associated with a specific execution count thresholding
the activation; latter tiers tend to have a higher threshold than
former tiers and produce assembly code with deeper compi-
lation and optimization. There are a bunch of optimization
methods in each tier and they will be optionally activated and
interleaved based on the profiling information when the JIT
tier gets triggered. Bugs can exist in any tier and a holistic
testing approach should be able to drill into each.

The activation thresholds for each JIT compiler tier in dif-
ferent engines are usually configurable. It is worth mentioning
that the thresholds cannot be set too small as some optimiza-
tions require a least number of execution times to be wit-
nessed when making decisions. Too small thresholds may
lead to false positives that cannot be reproduced under the
engine’s default settings; larger ones sacrifice more testing
efficiency. Next, we report the original threshold settings of
each engine, and how they are reconfigured, based on trial
and error and some industry experience. The configurations
work well in our experiments and cause no false positives.

In JavaScriptCore, there are three tiers of JIT compilers.
The baseline JIT compiler and the DFG (Data Flow Graph)
JIT compiler get activated to compile and optimize a function
if it is called more than 6 and 66 times, respectively. The FTL
(Faster Than Light) JIT compiler starts to compile if any func-
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Parser Interpreter JIT Compiler

JavaScriptCore Parser Low-Level
Interpreter

Baseline 
JIT DFG JIT FTL JIT

V8 Parser TurbofanIgnition

ChakraCore Parser Simple JITInterpreter Full JIT

SpiderMonkey Parser JIT 
CompilerInterpreter

Figure 7: The architecture of four JavaScript engines.

tion runs for more than ten milliseconds on a modern CPU.
We uniformly customize the thresholds as 10, 50, and 100 in-
vocations to a function in our experiments. In SpiderMonkey,
the JIT compiler requires 1,000 times function invocations
to trigger, and we set it to 50. In ChakraCore, the Simple JIT
and the Full JIT require, respectively, 25 and 20,000 times
iterations to trigger by default. We experimentally set them
as 10 and 100 times.

When wrapping a test case to trigger the JIT compiler
module with a single tier, the template in Figure 6 can be
used directly. If there is more than one tier, the triggering
structure (similar to lines 21 to 28 in Figure 6) for each tier,
from former to latter, will be subsequently pipelined under
the true branch of the if statement at line 20. To ensure a
JIT compiler tier is triggered with a 100% chance during
fuzzing, the opt function will be called (more than) two times
its threshold. That is to say, given a threshold of τ, the N at
line 22 in Figure 6 will be set to 2∗ τ.

The activation mechanism for the V8 Turbofan JIT com-
piler differs from the other three. Instead of monitoring the
number of times a function gets invoked, it tries to pre-
dict the benefits of optimizing a function by estimating the
amount of time spent executing its unoptimized version and
guessing how many times it is to execute in the future [32].
To facilitate testing, V8 provides a builtin native syntax
to force the JIT compilation and optimization by calling
%OptimizeFunctionOnNextCall on the function to com-
pile. Its maintenance team admits bugs found this way re-
gardless of whether they can be reproduced under the original
activation setting. Hence, we set N to 1 when fuzzing V8 and
explicitly call %OptimizeFunctionOnNextCall(opt) right
after the for loop at line 22.

4.3 Revealing JIT compiler bugs
To make the fuzzing process more effective and expose more
bugs, we aim to generate test cases that can substantially
challenge the JIT compiler on its correctness of compilation
and optimization. Necessary speculation guards are expected
to be generated for sensitive operations correctly, and not
eliminated inappropriately during optimization. Depending
on the error types, targeted input mutation and generation
strategies should be developed. Here we discuss bug-leading

program elements and structures for fuzzing three of the most
popular bug residences, i.e., bounds-check elimination, redun-
dancy elimination, and common subexpression elimination.
We propose five heuristic mutation strategies regarding arrays,
objects, subexpressions, interesting numbers, and conditioned
variable reassignments, as they are the major targets being
analyzed during these three types of eliminations.

To confirm the association, especially for arrays, objects,
and interesting numbers, we conduct a small empirical study
on known JIT bugs and their exploits. We collected 164 dis-
tinct JIT compiler bugs along with their PoCs from the Google
Project Zero bug report list [8] and a GitHub repository on
JavaScript engines CVEs [11], and manually analyzed the
existence of these three types of elements. Two authors ana-
lyzed all 164 PoCs independently, discussed their discoveries
and reached an agreement. Among the 164 bug PoCs, arrays
appear in 112 of them, objects appear in 115 of them, and 50
demand special numbers. It is worth mentioning that multiple
factors might be required to trigger a bug.

In the next, we elaborate on how the code generation strate-
gies about each element are inspired and designed. Note that
the set of strategies could be extended to detect other JIT
compiler bugs by analyzing their root causes.
Arrays. Bounds checks at array indexing operations get
wrongly eliminated if the index is mistakenly deemed al-
ways within the array boundary. This happens when the
range of the index or the size of the array is estimated in-
correctly during range analysis. The range analysis is more
likely to make mistakes in some corner cases, which could
be exercised by interesting numbers. The size of an array is
affected by APIs conducting operations on it, thus it is impor-
tant to model and propagate the effect of different APIs on the
size range analysis. There are 12 typed arrays in JavaScript,
including Int8Array, Uint8Array, Int16Array, etc. For each,
there are more than 24 APIs, such as Array.concat(),
Array.copy(), Array.reverse(), and some of them need
complicated range calculations. For example, when analyz-
ing the array concatenation operation, Array.concat(), the
range addition should be performed correctly. Among the 164
collected bugs, six including CVE-2014-3176, CVE-2016-
1646, and CVE-2017-5030 are primarily caused by the incor-
rect modeling of Array.concat().
Objects. During redundancy elimination, a type check on a
variable will be removed when the variable type is deemed
never changed since its last type check. However, modifica-
tions of variable types can be conducted in an extremely
stealthy way, especially for JavaScript objects, which are
the main contributor to type confusion bugs. The type of
JavaScript objects is decided by the number and types of
their properties. Adding, deleting, or altering the properties
of an object will change its type. JavaScript allows all object
properties to be altered, even the magical properties, such
as __proto__, constructor and prototype. Altering these
magical properties allows one to overwrite or pollute the pro-
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totype of its base object. If the base object is also inherited
by other objects, the pollution will be propagated through
the prototype chain. With such stealthy means to modify ob-
ject types, the type verification algorithm can easily make
mistakes.
Subexpressions. The existence of common subexpressions
is a must for exercising common subexpression elimination
optimization. However, this can hardly or only sparsely be
achieved during random mutation. Here, we intentionally
make some subexpressions recurring in a test sample, and
try to make them complicated by mixing different operations,
such as multiplication, division, power, root, and so on. By
interspersing these subexpressions at different locations of the
program, we challenge the JIT compiler on analyzing the side-
effect of operations between any two common subexpressions.
If the valuation of the latter subexpression is altered under
the table and overlooked by the optimizer, it will be incor-
rectly replaced with an obsolete value and cause inconsistent
execution results.
Interesting numbers. Interesting numbers are incredibly ef-
fective in testing corner cases where JIT compilers easily
make mistakes especially during range analysis and type
check. For example, 268,435,440, the upper bound of the
size of a string, is used to trigger the bug in our motivation
example [29]. 2.3023e-320 is a special float and it is found
to be mistakenly treated as a pointer to an object and trigger
type confusion bugs in CVE-2017-11802, CVE-2018-0840,
CVE-2018-8556, CVE-2018-0835, CVE-2018-0953, CVE-
2018-8466, and CVE-2018-8542. Also, -5.3049894784e-
314, which equals to 0x8000000280000002, is the con-
stant JavascriptNativeFloatArray::MissingItem and
is used to cause type confusion in CVE-2018-0953.
Conditioned variable reassignments. To test whether JIT
compilers generate type and bounds checks properly and cor-
rectly, never remove them incorrectly during optimization,
and verify them correctly at runtime, we design a novel pro-
gram semantics to alter the type and value of some variables
conditionally. We turn off the alteration when triggering the
JIT compiler and test whether a proper check can be gener-
ated, without seeing the runtime variable type and value at the
alteration path during profiling, and survive the optimization
if the variable is used in a sensitive operation. This design is
illustrated in the template in Figure 6. The opt function takes
a parameter that controls whether the body of the if statement
at line 9 gets executed. Inside its body, some variables are
changed into different types and values. In this example, v0
is changed from an array to an object. When triggering the
JIT optimization, we carefully control the argument passed
to opt as false (see line 23), such that altered type of v0
is never observed at runtime. There is an array indexing op-
eration over v0 at line 13, for which a bounds check and a
type check should be generated by the JIT compiler and not
removed during optimization, because the side effect of the
if body can flow to line 13. If the type check is mistakenly

removed and opt is called with the alteration on (see line 25),
the indexing operation over an object will cause a type confu-
sion bug. Otherwise, the type check fails and the JIT compiler
should bailout to the lower-level compiler or interpreter for
safer processing.
Controlling syntax complexity. When generating the opt
function body during mutation, we favor the generation
of variable declaration and assignment statements, and the
JavaScript builtin API call statements associated with various
data types. In particular, we increase the chance of generating
arrays and their related builtin API calls, and generating ob-
jects and their type alteration operations. To make recurring
subexpressions, we maintain a pool of existing subexpres-
sions and allow them to be inserted repeatedly during muta-
tion. Also, we extract a set of interesting numbers from the
164 collected PoCs and let the fuzzer choose from it rather
than generating random numbers when needed. For the con-
ditioned variable reassignments, we insert an if statement
conditioned on the parameter of opt, and randomly generate
its body. To further improve the density of JIT bug revealing
elements, we disable the generation of complex statements
such as function declarations, class declarations, try/catch
statements, switch/case statements. We also avoid generating
loop structures inside the function body of opt, as it itself
is embedded in loops and too many loop structures also hin-
der the execution efficiency during fuzzing. By keeping the
syntax simple and pure, we can also improve the semantic
correctness rate of the generated test inputs.

4.4 Capturing JIT compiler bugs

By returning the final execution states of the opt function,
we can observe its behavior from outside, and ensure that
any relevant code shall not be eliminated as dead code dur-
ing optimization. The testing capability of the code also gets
maximized because every statement counts during testing and
any tiny error in its execution will fire the alarm. Like typical
differential testing [24], we can execute a code fragment and
its JIT-ed version, respectively, record their final states and
conduct a comparison. This way, their calling context is guar-
anteed to be identical and any discrepancy is due to the differ-
ence between the interpretation and JIT compilation/optimiza-
tion. However, this will end up with launching the JavaScript
engine twice, which is extremely time-consuming and causes
terrible lag to the fuzzing process.

Here we propose a novel idea to make a test case self-
aware of the execution consistency by integrating these two
executions into one single run and including the logic of
comparison in itself. The test code (i.e., the opt function) is
firstly executed purely with the interpreter and then with the
JIT compiler on board (see lines 21 to 25 in Figure 6), and
their final states are further compared (see lines 26 to 28).
This design relies on the important fact that a JavaScript test
case is not only a program input to the JavaScript engine, but
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Table 2: The comparison rules of deepEquals().

Type Comparison rule

undefined, null, bigint, r1 === r2
symbol, boolean, string

number if (r1 === 0) Object.is(r1, r2)
else if (isNaN(r1)) isNaN(r2)
else r1 === r2

object (Number) deepEquals(r1.valueOf(), r2.valueOf())

object (Date, String, classOf(r1) === classOf(r2)
RegExp, Error, Boolean) r1.toString() === r2.toString()

object (Array, Map, classOf(r1) === classOf(r2)
WeakMap, Set, WeakSet, pros1 = Object.keys(r1).sort()
JSON, Object) pros2 = Object.keys(r2).sort()

pros1.length === pros2.length
for( var i = 0; i < pros1.length; i++)

deepEquals(r1[pros1[i]], r2[pros2[i]])

also some code to be executed. By carefully designing the
generation process of the wrapping code, the upgraded test
case can be executed successfully, as long as the opt function
is free of syntax and semantic errors.

Now, we explain how to examine if two final states, i.e., the
two arrays, are identical. There are eight builtin data types in
JavaScript, namely undefined, null, bigint, symbol, boolean,
string, number, and object. Except for object, all others are
primitive types and we can check whether they are strictly
equal with the “===” operator. For a variable of object type, it
is a reference/pointer to an object, which is usually associated
with a set of properties, in the form of key-value pairs, and
a list of methods. Here, keys are of primitive types while
values can be of any type, either primitive or non-primitive.
To thoroughly compare two objects (see [22]) is costly. Given
that the comparison is included in the test case, complicated
calculations also slow down the fuzzing speed. Here, we
focus on comparing the key-value pairs, as they are the major
characters to operate on in a program.

The deepEquals() function (see line 1) compares two
variables of any type deeply and recursively. Variables of
different types are never identical. The inductive rules for
comparing variables of the same data types are illustrated in
Table 2. Note that the rules are not code and all comparative
statement means a comparison check has to be conducted.
Two variables are identical if only every comparison encoun-
tered during the recursive execution returns true. Rules for
primitive types are all base cases and require no recursive
call. Particularly, two special cases for the number type are
considered, where “===” fails to differentiate 0 and -0 and
deems any comparison involving NaN (Not-A-Number) as not
equal. Differentiating 0 and -0 matters in some mathematical
calculations, e.g., division and atan2, and several JIT com-
piler bugs are caused by their misuse, which means it is an
informative inconsistency to capture; Object.is() is able
to tell them apart. NaN indicates a failure in mathematical

calculation, and its comparison rule with “===” incurs false
positives, i.e., unnecessary inconsistency, where two NaNs are
deemed unequal. Here we rectify it as equal. For object types,
we consider commonly used classes, and group them based on
whether they could be compared with the same rule. Classes
that mainly wrap a primitive types variable, e.g., Date and
String, can be compared based on their toString() val-
ues. Here, we convert a Number object to its corresponding
primitive type precisely with the valueOf() function and
delegate the comparison to the rules for primitive numbers.
Otherwise, two objects are identical if they share the same list
of properties (returned by Object.keys()), and the value of
each property is deeply identical. To balance performance,
the deepEquals() function considers most of common errors
instead of going after capturing all possible inconsistencies.
Eliminate false positives. Executing the same function twice
in a single run does necessarily produce the same execution re-
sults, even on the same arguments, since their calling context
can differ due to some execution side effects, e.g., changing a
global variable which is used by the function as well. Other
factors that can lead to divergent execution results include
generating random numbers (e.g., Math.random()), reading
current time (e.g., Date.now()), and concurrency. Such in-
consistency caused should not be counted when auditing the
correctness of the JIT compiler. We eliminate these annoying
effects to avoid false positives. The concurrency feature can
be disabled with command flags for various JavaScript en-
gines. For other factors, we propose a two-pronged approach
to settle them efficiently and reliably. We create a blacklist of
disturbing APIs and block their generation during mutation.
On the other hand, we conduct a pre-check on the existence
of these factors by consecutively executing the function a few
times and see if there is any discrepancy in the final states
(see lines 17 to 20 in Figure 6). Only test cases passing the
pre-check will be forwarded to test the JIT compiler. The
blacklist improves the success rate of obtaining a valid test
case and ensures fuzzing efficiency. To have a complete black-
list is non-trivial, the pre-check is there to effectively cut off
unqualified test cases. We also carefully control the execution
iterations to be small and avoid activating the JIT compiler.

5 Evaluation

Testing subjects. We select four mainstream JavaScript en-
gines, namely JavaScriptCore (JSC) in Safari, V8 in Chrome,
SpiderMonkey (SM) in Firefox, and ChakraCore (CH) in
Edge (before March 2021, and currently in maintenance
mode), and use their latest build in December 2021 (when we
started our experiments) as the testing subjects to evaluate our
approach. These JavaScript engines all have large code bases,
to which the JIT modules make substantial contributions. In
Table 3, we list the total number of lines of code and func-
tions in each subject and those in its JIT modules, and we also
display the percentage contributed by JIT modules. In terms
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Table 3: The size information of the JavaScript engine subjects
used in the evaluation.

Subject Browser Modules # Lines # Functions

JSC Safari
JIT 57,237 6,357

Total 255,068 67,861
JIT ratio 22.43% 9.36%

V8 Chrome
JIT 219,043 21,379

Total 760,150 116,540
JIT ratio 28.91% 18.36%

SM Firefox
JIT 88,054 23,399

Total 528,049 172,863
JIT ratio 16.67% 13.53%

CH⋆ Edge
JIT 61,805 5,375

Total 246,001 78,995
JIT ratio 25.12% 6.80%

⋆ ChakraCore was the JavaScript engine for Edge browser before March 2021 and
is currently in maintenance mode.

of lines of code, the occupation of the implementation of JIT
modules in the four subjects ranges from 16.67% to 28.91%.
On average, the JIT modules account for almost a quarter
of all source code lines, which indicates the complexity and
importance of JIT compilers. Exploring the JIT compilers and
finding bugs there is of significant demand. These JavaScript
engines all have gone through exhaustive manual auditing
and testing by their quality assurance teams and wild security
researchers. Any new bugs detected by FuzzJIT are escapers
from all earlier examinations, which demonstrate the effec-
tiveness of our approach.
Implementation and settings. We implement FuzzJIT based
on Fuzzilli [9]. Fuzzilli is a coverage-guided fuzzer for
JavaScript engines based on a custom intermediate language,
FuzzIL, which can be mutated and translated to JavaScript.
Instead of mutating the AST, or other syntactic elements of
a program, FuzzIL facilitates convenient mutations on the
control and data flow of a program. A FuzzIL program con-
tains a list of instructions, and can be lifted to a JavaScript
program for testing. Fuzzilli is reported to find 51 bugs in
six JavaScript engines [9], and being popularly adapted to
build powerful JavaScript fuzzer by academia researchers and
industry practitioners. We utilize its essential fuzzing harness,
including code coverage feedback and execution result anal-
ysis, and customize the input mutation module to generate
our JIT bug revealing elements and add the new input wrap-
ping module (see Figure 5). Our evaluation environment is
a Ubuntu 20.04 system, running on an i9-10900K CPU with
64GB RAM.
Baselines. We compare FuzzJIT with Jsfunfuzz [28], a
JavaScript fuzzer with JIT-specific extension, and three state-
of-the-art general-purpose JavaScript engine fuzzers, i.e., Su-
perion [37], DIE [23], and Fuzzilli. Superion, DIE and Fuzzilli
are mutation based fuzzing tools. Superion finds bugs by con-
ducting crossover on the AST sub-trees of two parent samples.
DIE advances the crossover by restricting the types of sub-tree.
Jsfunfuzz generates a large test case (up to 229KB) by em-

Table 4: The seed and timeout configurations of FuzzJIT and
other baselines.

Baseline Jsfunfuzz Superion DIE Fuzzilli FuzzJIT

#Seed - 100 100 - -
Timeout 50s 500ms 1000ms 500ms 500ms
Timeout rate 32.14% 2.45% 1.65% 0.66% 1.37%

bedding almost all JavaScript elements and refreshing some
features randomly under each runs. Its JIT-specific extension
executes a test case twice, with or without the JIT activated,
and identifies a bug if the two printouts are different. Fuzzilli
features with fine grained bytecode level mutation to achieve
better control and data flow mutation.

In our comparison experiments, we use the implemen-
tations of baselines provided by UniFuzz [18], which is a
fuzzing approach evaluation benchmark and provides a col-
lection of docker for 37 well-known fuzzers, including Supe-
rion, DIE, Jsfunfuzz, and Fuzzilli, to ease the evaluation of
different fuzzing approaches. The seed and timeout configura-
tions used to execute FuzzJIT and the other four baselines are
summarized in Table 4. Only Superion and DIE require initial
seeds. DIE’s initial seed corpus contains 100 JavaScript files
generated by its given script, and the same set of initial seeds
are also used for Superion.

Different tools offer different ways to get the branch
coverage of test samples. For Fuzzilli and FuzzJIT, the
branch coverage rate can be easily obtained through their
API. For Superion and DIE, the AFL-based fuzzers, the
branch coverage cannot be obtained directly. However, it
can be calculated from the bitmap information read from
the fuzzing statistics. According to AFL technical white pa-
per [42], the branch coverage rate equals (Bitmap density)∗
(Bitmap size)/(Instrumentation count), where bitmap size
is configured as 222 in Superion and remains default 216 in
DIE, the instrumentation count can be calculated by counting
the “call __afl_maybe_log” instructions in the instrumented
testing subjects, and the bitmap density can be read directly.
For Jsfunfuzz, since it is not a coverage-guided fuzzing tool,
there is no provided API to extract the branch coverage infor-
mation. We attempted to calculate it with the help of AFL,
however, due to the extreme large tests generated by Jsfun-
fuzz, AFL crashes due to short of memory (on a machine with
64GB RAM).

Timeout is the max time budget allowed to execute an
individual test case. To avoid the fuzzing process getting stuck
on non-terminating executions, the timing out mechanism is
widely used by fuzzing tools. In principle, a larger timeout is
used by fuzzers generating larger inputs. In our experiments,
we set the timeout for different tools with the aim to control
the timeout rate within 3%. Here, the timeout rate is a ratio
of the number of executions observed in a period of time that
cannot finish within the given timeout over the total number
of executions. We meter the execution rate at the end of 24-
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hour fuzzing, and report the average value of 10 campaigns.
For DIE, we keep its default configuration timeout, which is
1000ms. For Superion, Fuzzilli, and FuzzJIT, 500ms is set
as the timeout limit. The timeout of Jsfunfuzz is set to 50s,
which is one or two orders of magnitude larger than others’,
since its generated samples are super complex and requires a
long execution time. Even though, its timeout rate is as high
as 32.14%, and we did not set a larger timeout in order to
balance the throughput.
Experiment design. We first evaluate the bug-finding capa-
bility of FuzzJIT on all testing subjects, and report the bugs
detected by FuzzJIT and other baselines, and whether they
are bugs in JIT compilers. Then, to better understand the
fuzzing effectiveness and efficiency of FuzzJIT, we measure
two important metrics, namely code coverage of the generated
test cases and the throughput of FuzzJIT and other baselines.
Branch coverage reflects the percentage of the branches exer-
cised by the tests samples over the total number of branches;
a higher branch coverage implies a more thorough examina-
tion. The execution throughput is measured by the number of
test cases executed in 24 hours; a larger throughput indicates
faster tests execution during fuzzing. High code coverage
and throughput are both desired properties of fuzzing tools to
hunt more bugs. Second, to better understand the importance
of each of the three modules in FuzzJIT – the JIT trigger-
ing module, the JIT bug revealing module and the JIT bug
capturing module, as well as the fine-grained importance of
each mutation strategy in the JIT bug revealing module, to
the performance of FuzzJIT, we conduct an ablation study by
disabling one and only one of the modules or the mutation
strategies and measure the number of bugs discovered and
the final code coverage by these variants of FuzzJIT. Last, we
case study the bug-triggering tests generated by FuzzJIT and
demonstrate the effectiveness of our JIT bug revealing input
mutation strategies.

When measuring and comparing the code coverage and
throughput, we execute the experiment for multiple cam-
paigns and test the statistical significance of FuzzJIT achiev-
ing better performance (i.e., higher coverage/throughput) than
the baselines/variants with Vargha Delaney Â12 and Mann
Whitney U test (U). Mann Whitney U test (U) tests whether a
list of observations is stochastically greater than the other list,
while Â12 measures the magnitude of the difference (effect
size). The performance difference is significant when the p-
value of U (pU ) is below 0.05. Â12 ≥ 0.71 indicates FuzzJIT
outperforms with a large effect size, and Â12 < 0.29 means
that FuzzJIT underperforms with a large effect size.

5.1 Comparison experiment

New bugs found. We run all five fuzzers on each testing tar-
get for the same period (one month) and compare their ability
to find new bugs. The details of the detected bugs are shown
in Table 5 (columns 4 to 10). FuzzJIT exposes 33 unique new

bugs, among them ten are in JavaScriptCore, five in V8, two
in SpiderMonkey, and 16 in ChakraCore. The three bugs for
which we created exploitation PoCs have been submitted to
Chromium Bugzilla and Microsoft Security Response Center.
In comparison, Jsfunfuzz, Fuzzilli, DIE, and Superion find
zero, three, one, and one new bug, respectively, and all five
bugs are in ChakraCore. Since Fuzzilli, DIE, and Superion
are general-purpose fuzzers, they can hardly activate the JIT
module, let alone detect bugs there. Disabling the JIT trigger-
ing of FuzzJIT also makes it find no bugs, and more details
will be discussed in the ablation study. Jsfunfuzz’s JIT acti-
vating mechanism only works on SpiderMonkey, and due to
the limited search space and low throughput (see discussion
below), it also failed to spot any new bugs.

For any detected bug, we also report the number of days
(in the parentheses in columns 6 to 10) used to find it the first
time. On average, FuzzJIT needs only 3.09 days to uncover a
bug in the targets. Seven bugs are found on the first day, and
eight out of the 33 bugs are exposed by the second day. We
can also observe that all bugs detected by FuzzJIT are in the
JIT compiler, while among the five bugs detected by other
baseline tools, only one detected by Fuzzilli is in the JIT com-
piler. Here, we check the crash backtrace (tests captured with
inconsistency oracle are also forced to crash), and confirm the
bug location as the source code closest to the crash. FuzzJIT
detects 12 non-crashing bugs and none is false positive. They
were accurately captured thanks to the enhanced test oracle
and the pre-check mechanism. We also list the values of the
particular variable which incurs the discrepancy before and
after the JIT compilation in the fourth column.

Compared with baselines, FuzzJIT exhibits excellent supe-
riority in detecting new JIT bugs in real-world JavaScript
engines within the one month fuzzing time window.

Coverage. For each tool and each testing subject, we mea-
sure the branch coverage reached after 24-hour fuzzing, and
count the number of tests executed to reflect the throughput.
For each setting, 10 campaigns of fuzzing are conducted to
mitigate the effect of randomness. We test the statistical sig-
nificance of our conclusions drawn from comparisons with U
and Â12, and report the average value.

The results of branch coverage are presented in Table 6
(columns 3 to 7). The row “Improvement” indicates the per-
centage of coverage improvement of FuzzJIT compared with
a baseline. The branch coverage information for Jsfunfuzz
is missing. As a generation-based fuzzing tool without any
coverage guidance, Jsfunfuzz does not provide any API to
obtain the branch coverage, and we could not find any feasible
way to meter its branch coverage, due to its extreme large
tests cases. On all subjects, FuzzJIT achieves higher coverage
than Superion, DIE and Fuzzilli. As a fuzzer specially for
JIT, FuzzJIT also hits superior coverage, as the JIT compil-
ers, concentrated by FuzzJIT, contribute largely to JavaScript
engines’ codebase, but are thinly explored by other baselines.
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Table 5: Unique bugs detected during one month by FuzzJIT, baselines, and FuzzJIT variants.

SN Subject ID Output Module
Comparison with baselines Ablation study

FuzzJIT Jsfunfuzz Superion DIE Fuzzilli -o -j -m -m1 -m2 -m3 -m4 -m5

1 JSC 233118⋆ crash JIT ✓(1) - - - - ✓(1) - ✓(2) ✓(1) ✓(1) ✓(2) ✓(2) ✓(2)
2 JSC 232866⋆ -NaN/NaN JIT ✓(2) - - - - - - - - - - - ✓(2)
3 JSC 232869⋆ 1/-1 JIT ✓(4) - - - - - - - - - - - -
4 JSC 228068⋆ True/False JIT ✓(2) - - - - - - ✓(3) ✓(2) ✓(3) ✓(4) ✓(3) ✓(3)
5 JSC - -Infinity/Infinity JIT ✓(3) - - - - - - ✓(4) ✓(3) ✓(4) ✓(5) ✓(3) ✓(4)
6 JSC - 255/0 JIT ✓(5) - - - - - - - - ✓(5) - ✓(6) ✓(6)
7 JSC - crash JIT ✓(1) - - - - ✓(1) - ✓(2) ✓(2) ✓(3) ✓(1) ✓(2) ✓(4)
8 JSC 233353⋆ undefined/NaN JIT ✓(1) - - - - - - - ✓(2) ✓(1) ✓(1) ✓(2) ✓(2)
9 JSC 239757⋆ undefined/NaN JIT ✓(6) - - - - - - - ✓(6) ✓(8) ✓(7) ✓(6) ✓(5)
10 JSC 239758⋆ -Infinity/Infinity JIT ✓(3) - - - - - - - ✓(3) ✓(5) ✓(4) ✓(3) ✓(5)

11 V8 11977◦ True/False JIT ✓(4) - - - - - - - ✓(5) ✓(6) - ✓(5) ✓(4)
12 V8 1224283• undefined/123 JIT ✓(3) - - - - - - ✓(3) ✓(3) ✓(4) ✓(6) ✓(4) ✓(3)
13 V8 12471◦ 14951/14955 JIT ✓(3) - - - - - - ✓(4) ✓(4) ✓(3) ✓(4) ✓(7) ✓(4)
14 V8 1276923• crash JIT ✓(7) - - - - ✓(7) - - ✓(8) ✓(7) ✓(9) ✓(8) ✓(8)
15 V8 12495◦ opt()/11 JIT ✓(7) - - - - - - - - - - - -

16 SM 1747013÷ opt()/NaN JIT ✓(4) - - - - - - ✓(4) ✓(6) ✓(6) ✓(5) ✓(7) ✓(6)
17 SM 1747777÷ crash JIT ✓(6) - - - - ✓(7) - ✓(6) ✓(7) ✓(7) ✓(6) ✓(7) ✓(5)

18 CH 6762⊕ crash JIT ✓(1) - - - - ✓(1) - ✓(2) ✓(1) ✓(2) ✓(2) ✓(3) ✓(2)
19 CH 6763⊕ crash JIT ✓(2) - - - - ✓(3) - - - ✓(4) ✓(2) ✓(3) ✓(2)
20 CH 6764⊕ crash JIT ✓(1) - - - - ✓(2) - ✓(2) ✓(2) ✓(1) ✓(2) ✓(1) ✓(2)
21 CH 6765⊕ crash JIT ✓(2) - - - - ✓(3) - ✓(4) ✓(3) ✓(3) ✓(3) ✓(4) ✓(3)
22 CH 6766⊕ crash JIT ✓(2) - - - - ✓(3) - ✓(2) ✓(3) ✓(4) ✓(3) ✓(2) ✓(2)
23 CH 6767⊕ crash JIT ✓(3) - - - - ✓(5) - ✓(4) ✓(4) ✓(5) ✓(4) ✓(3) ✓(4)
24 CH 6770⊕ crash JIT ✓(2) - - - - ✓(3) - - - ✓(3) ✓(5) ✓(5) ✓(3)
25 CH 6771⊕ crash JIT ✓(4) - - - - ✓(4) - ✓(5) ✓(4) ✓(5) ✓(5) ✓(4) ✓(4)
26 CH 6772⊕ crash JIT ✓(1) - - - - ✓(2) - ✓(2) ✓(1) ✓(2) ✓(2) ✓(2) ✓(3)
27 CH 6773⊕ crash JIT ✓(5) - - - - ✓(6) - - - ✓(6) ✓(7) ✓(8) ✓(8)
28 CH 6774⊕ crash JIT ✓(2) - - - - ✓(2) - ✓(3) ✓(3) - ✓(3) ✓(2) ✓(4)
29 CH 6775⊕ crash JIT ✓(3) - - - - ✓(4) - ✓(4) ✓(3) ✓(5) ✓(6) ✓(3) ✓(4)
30 CH 6776⊕ crash JIT ✓(1) - - - - ✓(2) - ✓(2) ✓(3) ✓(1) ✓(2) ✓(3) ✓(1)
31 CH 6777⊕ crash JIT ✓(5) - - - - ✓(6) - - - ✓(7) ✓(6) ✓(7) ✓(6)
32 CH 059706⊙ crash JIT ✓(4) - - - - ✓(5) - ✓(7) ✓(7) ✓(6) ✓(6) ✓(7) ✓(4)
33 CH 6783⊕ True/False JIT ✓(2) - - - - - - - - ✓(2) ✓(3) ✓(3) ✓(2)

34 CH 6778⊕ crash Interpreter - - ✓(3) - - - - - - - - - -
35 CH 6779⊕ crash Interpreter - - - ✓(5) - - - - - - - - -
36 CH 6780⊕ crash JIT - - - - ✓(2) - - - - - - - -
37 CH 6781⊕ crash Interpreter - - - - ✓(4) - - - - - - - -
38 CH 6782⊕ crash Interpreter - - - - ✓(5) - - - - - - - -

Total #Bugs (Average #Days to discover a bug) 33(3.09) 0(-) 1(3) 1(5) 3(3.66) 19(3.52) 0(-) 19(3.42) 24(3.58) 29(4.10) 28(4.10) 30(4.16) 31(3.77)
⋆ All bugs have been confirmed on the release versions. Bug ids listed above are assigned by Webkit Bugzilla [38](⋆), V8 Bugzilla [33](◦), Mozilla Bugzilla [20](÷), and

ChakraCore issues list [3](⊕), who are the ordinary maintainers for bugs in JavaScriptCore, V8, SpiderMonkey, and ChakraCore, respectively, and Chromium Bugzilla [6](•)
and Microsoft Security Response Center [19](⊙), who provide bug bounty for exploitable bugs.

FuzzJIT significantly outperforms Superion, DIE, and
Fuzzilli on coverage, with a large effect size.

Throughput. The results of throughput are reported in Ta-
ble 7. Overall, FuzzJIT executes the most tests in 24 hours on
all subjects, while Jsfunfuzz executes the least. Jsfunfuzz gen-
erates test cases incorporating massive JavaScript elements,
whose size is large and can be up to 100 times of those by
FuzzJIT. Superion and DIE demonstrate similar throughput
on all four subjects, and Fuzzilli executes a little bit slower
than them.

We are a bit surprised to find that FuzzJIT exhibits the best
throughput among all tools. FuzzJIT wraps all generated test
cases with loop structures to trigger JIT compilers intention-
ally, which means the tests will execute for a longer time and
impede the fuzzing speed. However, FuzzJIT still achieves
an exceptionally good throughput. We reckon this is mainly
attributed to our code mutation strategies where we avoid

generating complex elements and additional loop structures
inside the body of opt. We also observe that all tools mostly
present different throughput on different subjects, which could
be due to the intrinsic different implementations of these en-
gines. To confirm the detailed reasons is challenging and out
of our research scope.

FuzzJIT achieves the best throughput on all four subject
JavaScript engines among all compared tools. Efficient test
cases execution also brings a higher chance for FuzzJIT
to discover more bugs within the same time budget.

Semantic correctness rate.
Generating semantically correct test samples is essential

to fuzz the deep area of a program. The semantic correctness
rate (SCR) is the percentage of semantically correct tests, i.e.,
those not raising any uncaught exceptions, among all samples
generated during a period of time. A higher SCR is also de-
sirable for uncovering deeply-buried bugs. Here we compare
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Table 6: Branch coverage (10-campaign average) reached after 24-hour fuzzing by FuzzJIT, baselines, and FuzzJIT variants.

Subject Metric
Comparison with baselines Ablation study

FuzzJIT Superion DIE Jsfunfuzz Fuzzilli -o -j -m -m1 -m2 -m3 -m4 -m5

JSC

Average 21.90% 16.84% 21.17% - 16.47% 21.80% 18.09% 19.90% 20.16% 21.11% 20.82% 21.08% 21.65%
Improvement - 30.04% 3.48% - 32.96% 0.45% 21.06% 10.05% 8.63% 3.74% 5.18% 3.88% 1.15%

Â12 - 0.99 0.81 - 0.99 0.71 0.99 0.99 0.99 0.81 0.99 0.81 0.71
pU - <0.01 <0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

V8

Average 16.67% 12.65% 13.39% - 13.82% 16.74% 15.08% 15.97% 16.41% 16.58% 16.01% 16.21% 16.19%
Improvement - 31.77% 24.49% - 20.62% -0.41% 10.54% 4.38% 1.58% 0.54% 4.12% 2.83% 2.96%

Â12 - 0.99 0.99 - 0.99 0.29 0.99 0.99 0.71 0.71 0.99 0.99 0.99
pU - <0.01 <0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

SM

Average 17.97% 11.49% 12.41% - 15.53% 17.89% 14.32% 16.07% 16.36% 16.42% 16.70% 16.17% 16.29%
Improvement - 56.39% 44.80% - 15.71% 0.44% 25.48% 11.82% 9.84% 9.43% 7.60% 11.13% 10.31%

Â12 - 0.99 0.99 - 0.99 0.71 0.99 0.99 0.99 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

CH

Average 22.70% 15.77% 20.11% - 19.30% 21.93% 20.41% 19.62% 19.85% 21.65% 19.63% 20.93% 20.72%
Improvement - 43.94% 12.87% - 17.61% 3.61% 11.21% 15.69% 14.35% 4.84% 15.63% 8.45% 9.55%

Â12 - 0.99 0.99 - 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 7: The total number of tests (10-campaign average) executed during 24-hour fuzzing by FuzzJIT, baselines, and FuzzJIT
variants.

Subject Metric
Comparison with baselines Ablation study

FuzzJIT Superion DIE Jsfunfuzz Fuzzilli -o -j -m -m1 -m2 -m3 -m4 -m5

JSC

Average 1,312K 1,236K 1,245K 8K 1,069K 1,392K 1,498K 1,171K 1,174K 1,226K 1,174K 1,219K 1,166K
Improvement - 6.14% 5.38% 16300.00% 22.73% -5.74% -12.41% 12.04% 11.75% 7.01% 11.75% 7.62% 12.52%

Â12 - 0.99 0.99 0.99 0.99 0.01 0.01 0.99 0.99 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

V8

Average 1,593K 1,218K 1,250K 15K 953K 2,419K 2,676K 2,184K 2,188K 2,213K 2,197K 2,191K 2,181K
Improvement - 30.78% 27.44% 10520.00% 67.15% -5.20% -14.31% 4.99% 4.79% 3.61% 4.36% 4.65% 5.13%

Â12 - 0.99 0.99 0.99 0.99 0.01 0.01 0.99 0.99 0.81 0.81 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

SM

Average 1,718K 1,255K 1,224K 12K 1,017K 1,775K 1,805K 1,633K 1,642K 1,643K 1,635K 1,646K 1,626K
Improvement - 36.89% 40.35% 14216.66% 68.92% -3.21% -4.81% 5.20% 4.62% 4.56% 5.07% 4.37% 5.65%

Â12 - 0.99 0.99 0.99 0.99 0.19 0.01 0.99 0.99 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

CH

Average 3,765K 3,048K 3,002K 18K 2,932K 3,897K 3,980K 3,437K 3,522K 3,509K 3,506K 3,544K 3,365K
Improvement - 23.52% 25.41% 20816.66% 28.41% -3.38% -5.40% 9.54% 6.89% 7.29% 7.38% 6.23% 11.88%

Â12 - 0.99 0.99 0.99 0.99 0.19 0.01 0.99 0.99 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

the SCR of FuzzJIT with other baselines. In a similar setting
as metering the coverage and throughput in the comparison
experiment, we execute each tool on each test subject for 24
hours, and use Fuzzilli to compute the number of all seman-
tically correct samples and total executions. The semantic
correctness rate is calculated as the number of semantically
correct samples divides the total executions. The process are
repeated for ten times, and we further take their average, and
report the values in Table 8. We also test the statistical signifi-
cance and effect size of FuzzJIT achieving a higher SCR than
other tools with U and Â12.

Overall, FuzzJIT achieves the highest SCR on all test-
ing subjects among all the tools, and reaches an average of
93.08%, which is around 46.76% higher than that of the sec-
ond best tool – Fuzzilli. Fuzzilli demonstrates a good SCR,
63.42% on average. This is mainly credited to its intermediate
language which supports semantic mutations. In addition to

the merits inheriting from Fuzzilli, FuzzJIT generates test
cases following a well-designed structural template, and also
carefully controls the mutators to avoid generating complex
elements when generating the body of opt, thus achieving an
even better SCR. Superion shows an average SCR of 38.13%,
as its random cross-over mutation operations can easily break
the semantic validity. DIE reveals an average SCR of 57.78%
on the four targets. Its type-preserving mutation can keep
better semantic validity of samples than Superion. Jsfunfuzz
achieves a SCR of 45.24% on average. This low SCR is
caused by its generation approach. It first generates a sample,
then splits it into two halves and tries to compile each half,
mostly aiming to find bugs in the compiler’s error-handling
mechanisms.
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Table 8: The semantic correctness rate (10-campaign average)
of FuzzJIT and baselines.

Subject Metric FuzzJIT Superion DIE Jsfunfuzz Fuzzilli

JSC

Average 90.33% 34.73% 59.21% 45.75% 62.80%
Improvement - 160.09% 90.33% 97.44% 43.83%

Â12 - 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01

V8

Average 97.04% 28.54% 57.80% 44.96% 64.34%
Improvement - 240.01% 67.88% 115.83% 50.82%

Â12 - 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01

SM

Average 93.28% 47.67% 60.07% 43.55% 64.13%
Improvement - 93.29% 55.28% 93.28% 45.45%

Â12 - 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01

CH

Average 91.68% 41.59% 54.04%. 46.71% 62.42%
Improvement - 120.43% 69.65% 96.27% 46.87%

Â12 - 0.99 0.99 0.99 0.99
pU - <0.01 <0.01 <0.01 <0.01

Average (among subjects) 93.03% 38.13% 57.78% 45.24% 63.42%

FuzzJIT produces samples with a higher SCR, such that
the samples are not turned down before getting interpret-
ed/compiled, drill deeper to JIT compilers, and improves
the fuzzing effectiveness.

5.2 Ablation study

In this experiment, we create variants of FuzzJIT by disabling
one and only one of its three designs, namely, the JIT trig-
gering mechanism(j), the mutation strategies for JIT bug re-
vealing (m), and the enhanced oracle for JIT bug capturing
(o), or any one of the five mutation strategies, related to Ar-
rays/Objects (m1), subexpressions (m2), interesting numbers
(m3), conditioned variable reassignments (m4), and the con-
trol on syntax complexity (m5). We compare the performance
of these variants with the vanilla FuzzJIT on two metrics, in-
cluding the new bugs found, the coverage, and the throughput,
and analyze the importance of each design feature and each
mutation strategy.
New bugs found. We allocate the same time budget as in
the comparison experiment, and execute each variant for one
month to detect new bugs. The results are presented in Table 5
(columns 11 to 18). The minus mark in front of a design or
mutation indicates that it is disabled. For example, -o means
that the oracle enhancement is muted. Overall, disabling any
of the designs or mutation strategies, FuzzJIT exposes fewer
bugs and takes longer time to discover them. Also, they do not
detect any new bugs that are missed by the vanilla FuzzJIT.
Obviously, every design and mutation is crucial to the per-
formance of FuzzJIT. There are two bugs, SN-3 and SN-15,
which are not detected by any variant, and we must enable all
the designs and mutations to discover them. When disabling
the JIT triggering mechanism, zero bug is detected on all
subjects. Without the enhanced oracle, 14 bugs escape from

the detection and only the 19 crash bugs are captured. For
the five mutation strategies, their importance to the fuzzing
effectiveness varies, where 2 to 9 fewer bugs are detected, and
the detected ones cost longer time to be detected.

All the designs and mutation strategies proposed in this
work are essential to the success of FuzzJIT.

Coverage. We execute the FuzzJIT variants on all four sub-
jects for 24 hours and repeat for 10 campaigns. The aver-
age branch coverage for each setting are reported in Table 6
(columns 8 to 15). Disabling the enhanced oracle makes
marginal affect to the coverage. However, a significant re-
duction on converge is observed on all testing subjects when
disabling either the JIT triggering mechanism (-j) or the muta-
tion strategies (-o). In the worst case, the coverage of Spider-
Monkey drops by 25.48% without the JIT triggering mech-
anism, and the coverage of ChakraCore drops by 15.69%
without the mutation strategies. Moreover, the removal of
any single mutation strategy leads to lower coverage, but the
deduction is not as much as removing all of them. The reason
is that the probabilities of generating other complex and/or
non-interesting elements increase when disabling any muta-
tion strategy, which leads to lower throughput, less exercise
on the branches, and fewer bugs detected.

Disabling either the JIT triggering mechanism or the mu-
tation strategies, the code coverage drops significantly,
while the removal of the enhanced oracle has marginal
affect to the coverage.

Throughput. Each variant is executed for 24 hours on every
testing subject, and we count the number of tests executed
in total. The process is repeated for 10 times. We report the
10-campaign average in Table 7 and test the statistical sig-
nificance and effect size for FuzzJIT outperforming its vari-
ants with U and Â12. When the enhanced oracle checking is
disabled (-o), there are less instructions to execute and the
throughput becomes better. We can observe that the variant
without the JIT triggering mechanism (-j) achieves higher
throughput than FuzzJIT on all testing subjects. In that case,
the tests would not be wrapped into the loop structures, thus
becoming more efficient. Our mutation strategies prefer the
generation of simple JavaScript elements. When they are
muted, the probability of generating them will decline, and in
turn the probability of generating other complicated elements
will increase. As a result, muting either only one or all of
the strategies, the throughput becomes lower than the vanilla
FuzzJIT.

Disabling either the JIT triggering mechanism or the en-
hanced oracle, FuzzJIT hits a higher throughput. While
the throughput declines when one or all of the mutation
strategies are muted.
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1 function opt () {
2 return parseInt ("−0");
3 }
4 let r1 = opt () ;
5 print (Object . is (r1 , −0)) ; // output : True
6 for ( let i = 0; i < 1000; i++) {
7 opt () ;
8 }
9 let r2 = opt () ;

10 print (Object . is (r2 , −0)) ; // output : False

Figure 8: JIT compiler Bug-228068 in JavaSciptCore.

1 function opt () {
2 var v0 = new Int16Array(2**32);
3 return v0[−1];
4 }
5 print (opt () ) ; // output : undefined
6 %OptimizeFunctionOnNextCall(opt);
7 print (opt () ) ; // output : 0

Figure 9: JIT compiler Bug-1224283 in V8.

5.3 Case study

In this section, we case study two bugs detected by FuzzJIT,
one in JavaScriptCore and one in bug V8, and both have been
fixed in their latest build. The PoCs we present are simplified
from the test case generated during fuzzing and are made to
fulfill the original JIT compiler activation threshold.
Case study 1. Figure 8 is a simplified PoC triggering Bug-
228068 in JavaScriptCore. The bug is caused by an error
in the JIT compilation where it generates the bytecode for
parseInt(“-0”). The bug does not cause any crashes and
is hard to be detected by other fuzzers. The JavaScript API
parseInt() converts a string into an integer. Before the JIT
compilation, “-0” is correctly converted to -0 at line 4. After
the JIT compiler is activated by the repetitive function invoca-
tion through line 6-8, opt is compiled into bytecode by the
JIT compiler and when it is called again, the bytecode con-
verts “-0” to 0. FuzzJIT captures this inconsistency through
the deep comparison rules.
Case study 2. Figure 9 shows a simplified PoC triggering
Bug-1224283 in V8. This bug is also caused by an error
during generating bytecode in the JIT compiler, and does not
lead to any crash. According to the specification of JavaScript,
when reading from an array with an out-of-range index, e.g.,
-1, it should return undefined. It is the case at line 5 before
the JIT compiler is triggered. After being triggered through
line 6, the JIT compiler starts to generate bytecode for the
opt function. When dealing with the array indexing operation
at line 3, the JIT compiler finds that the size of v0 exceeds
the range of the unsigned 32-bit integer type, which is 232-
1. It decides to convert 232 into an unsigned 64-bit integer.
The index is required to be of the same type as the array
size. Hence, the compiler converts the index -1 into an un-
signed 64-bit integer, without checking its sign, thus making

-1 to be 4,294,967,295 after the conversion, which is 232-1.
Therefore, when opt is called again at line 7, the erroneous
bytecode is executed, and the value with index 232-1 in v0 is
returned, which is 0. Again, FuzzJIT captures this bug with
its enhanced test oracle.
Discussion. We find that PoCs triggering these two bugs are
quite simple, but they are still missed by other fuzzers. This
is mainly due to the fact they use crash as the only test oracle.
Also, the interesting number -0 is crucial to trigger the first
bug, which also demonstrates the usefulness of our sample
mutation strategy. Due to the limited time budget, we have
not found exploitation of these two bugs ourselves, however
it does not mean they cannot be exploited. Though creating
exploitation is not within the scope of this research, we did
exploit two of our bugs, with ids from Chromium Bugzilla and
Microsoft Security Response Center, and do not disclose their
details here for security considerations. JIT compiler bugs
still have the potential to lead to more threatening security
attacks, such as remote code execution, thus should also be
paid more attention from the community.

6 Related works

Mutation based approaches. Mutation based approaches
produce new test cases from mutating existing test cases
at the intermediate representation level [4, 9], the AST
level [1, 12, 14, 17, 23, 37], the general grammar level [2, 31],
the token level [30], and the byte level [42], which is sorted
from JavaScript engine pertinence to generality. Fuzzilli [9]
proposes a customized intermediate language named FuzzIL
and a set of mutators that can spontaneously ensure the syn-
tax and semantic correctness of generated test cases. Poly-
Glot [4] proposes a unified intermediate representation for
nine programming languages and tests the general fuzzing
framework with 21 targets, including JavaScript and its en-
gines. Langfuzz [14] is the first to pursue AST level mutations
during fuzzing JavaScript engines. Following this line, Supe-
rion [37], Nautilus [1], DIE [23], CodeAlchemist [12], and
Montage [17] advance the AST level mutations through in-
troducing code coverage feedback guidance, variable typing
system, and prevailing neural network language models. Here,
DIE is applied to find crashing JIT bugs during evaluation,
but its mutations are not specially designed for revealing JIT
bugs. The aim of DIE is to sufficiently unleash the poten-
tial of seeds, via largely retaining its structure and variable
types. It is highly dependent on the high-quality JIT bug PoC
seeds, and can quickly become ineffective if no new PoCs
are added. Gramatron [31] performs input mutation based
on grammatical automaton and Grimoire [2] uses grammar-
like combinations to synthesize new highly structured inputs
without any pre-processing step. A recent work on mutat-
ing JavaScript tokes [30] is surprisingly effective in finding
new bugs in the parser, which are missed by byte-level and
grammar-level mutations.
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Generation based approaches. Generation based approaches
generate test cases based on grammar from scratch. Unlike
mutation based approaches, generation based approaches re-
quire intensive efforts from experts with thorough domain
knowledge and rich experience to develop the generation rules.
They tend to generate high-quality samples which could pen-
etrate deeply into the testing targets and sometimes find bugs
really hard to be uncovered other way. Jsfunfuzz [28] gener-
ates JavaScript test cases from hard-coded grammar rules. It
also provides a feature to test the correctness and performance
issues of the JIT compiler with differential testing. However,
compared to FuzzJIT, it lacks a generic JIT triggering mech-
anism, mutations specifically-designed to reveal JIT bugs,
and a systematically-enhanced test oracle to capture the JIT
bugs. And the generation based design also limits its search
space. Such inefficiencies make it fail to identify any new
bugs in the comparison experiments. Domato [7] generates
test cases from given grammar files with associated proba-
bilities. Skyfire [36] learns a probabilistic context-sensitive
grammar model from JavaScript corpus to generate new test
cases.
Differential testing. Differential testing comparatively tests
software systems/applications implementing the same func-
tionality, and is adopted to test JavaScript engines [22, 24, 41]
and other software, such as the Java virtual machine [5], SS-
L/TLS implementations [26, 34], HTTP protocol [16], Java
bytecode programs [21], quantum software stacks [35], and
CPU [15]. NEZHA [24] is a domain-independent differen-
tial testing framework that leverages evolutionary algorithms
to guide the generation of samples to maximize the discrep-
ancy between program paths taken during execution. Recent
works [22, 41] on JavaScript engine differential testing have
focused on exposing conformance bugs, i.e., implementation
deviations from the official specification. These approaches
are commonly restricted by what oracles can be extracted
from the specification, which is still quite challenging. Com-
fort [41] looks into JavaScript built-ins, extracts expected
output from the specification and compares it with the ac-
tual execution results. JEST [22] firstly generates the oracle
of program final states with a mechanized specification, and
embeds the original test input with assertions checking these
states, and observes whether there is any assertion failure.
The solution of JEST on checking oracle is not as efficient
as FuzzJIT, as the same input has to be executed twice to
firstly generate the program final state with JIT compiler and
instrument the code with assertions accordingly. Efficiency is
critical to finding bugs with fuzzing. We can see that none of
them is specialized in exposing JIT bugs, and conformance
bugs usually have a relatively weak security impact.

7 Conclusion and future work

In this work, we propose an oracle-enhanced fuzzing tech-
nique to detect non-crashing and crashing JIT compiler bugs

in JavaScript engines. Based on a code wrapping template, we
guarantee that all test cases trigger the JIT compiler module
and any unexpected execution discrepancy caused by the JIT
compiler is captured to identify bugs. Also with the help of
a feat of bug-revealing elements, we successfully exposed
33 JIT compiler bugs in four mainstream JavaScript engines.
The wrapping template in FuzzJIT is extensible to incorporate
other bug-revealing elements and detect JIT compiler bugs of
more diverse types.

Despite this, FuzzJIT just makes a quite initial exploration
on detecting JIT bugs in JavaScript engines with fuzzing,
and a lot more efforts from the community are demanded to
improve the correctness and security of JIT compilers. In the
future, we are interested in investigating a wider range of types
of JIT bugs, and designing suitable mutations and templates to
effectively uncover them. Another very interesting direction is
to look into how sufficiently the generated JIT code is covered
during fuzzing and whether its coverage can better guide the
detection of JIT bugs. A specific instrumentation mechanism
is desired to collect the coverage information of such code
generated at runtime.
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