
Detection and Classification of Malicious JavaScript via
Attack Behavior Modelling

Yinxing Xue† Junjie Wang† Yang Liu† Hao Xiao† Jun Sun‡ Mahinthan Chandramohan†
†Nanyang Technological University, Singapore

‡Singapore University of Technology and Design, Singapore

ABSTRACT
Existing malicious JavaScript (JS) detection tools and commercial
anti-virus tools mostly use feature-based or signature-based ap-
proaches to detect JS malware. These tools are weak in resistance
to obfuscation and JS malware variants, not mentioning about pro-
viding detailed information of attack behaviors. Such limitations
root in the incapability of capturing attack behaviors in these ap-
proches. In this paper, we propose to use Deterministic Finite Au-
tomaton (DFA) to abstract and summarize common behaviors of
malicious JS of the same attack type. We propose an automatic
behavior learning framework, named JS∗, to learn DFA from dy-
namic execution traces of JS malware, where we implement an ef-
fective online teacher by combining data dependency analysis, de-
fense rules and trace replay mechanism. We evaluate JS∗ using real
world data of 10000 benign and 276 malicious JS samples to cover
8 most-infectious attack types. The results demonstrate the scala-
bility and effectiveness of our approach in the malware detection
and classification, compared with commercial anti-virus tools. We
also show how to use our DFAs to detect variants and new attacks.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software; D.2.5 [Testing
and Debugging]: Tracing

Keywords
malware detection, malicious JavaScript, L*, behavior modelling

1. INTRODUCTION
In the prevalence of Rich Internet Applications [4], more and

more business logics and rendering tasks are migrated from servers
to clients, and such migrated logics or tasks are usually imple-
mented in JavaScript (JS). According to Microsoft’s recent security
report (Fig. 81 in [13]), the prevalence of JS with associated HTML
leads to the largest number of malware detected by Microsoft in the
first half of 2013, e.g., the infectious Blackhole exploits.

Signature-based approaches are commonly adopted by anti-virus
software, which generate a hash value or fingerprint for a malicious
sample. Although these approaches can efficiently detect known
malware, they fail to detect obfuscated variants with different hash

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8 ...$15.00.

values or fingerprints [52]. Additionally, from the feedback in us-
ing 56 anti-virus tools on VIRUSTOTAL [11], these tools seldom
agree on the family name of detected JS malware, not to mention
giving details on behaviors of the detected malware.

In parallel with signature-based approaches, there are two lines
of academic approaches. For scalability and performance reasons,
the first line of works mainly adopts machine learning techniques
to capture malicious characteristics of malware. These approaches
use syntax information (e.g., Abstract Syntax Trees [27][34]) or
dynamic information (e.g., JS API [26][42]) as the predicative fea-
tures for classifying malicious and benign scripts. The limitations
of these approaches are two-fold. Firstly, new features can easily
fail these approaches. Thus, they often require hundreds or thou-
sands of samples for the classifiers to attain a good accuracy (like
JSAND [26]). Secondly, they can neither be used to classify attack
types, nor can they identify new attacks from emerging malware.

The second line of approaches detects abnormal JS behaviors
using dynamic analysis by honey clients or sandbox. Suspicious
JS code is executed and compared with established profiles of nor-
mal JS—any inconsistency implies maliciousness. Various tools
are presented to detect heap-spray attacks [29][41], worms [38][22]
and other types [47]. A drawback of these tools is that they are de-
signed for specific JS attack types, not for general JS malware de-
tection. The detection also takes longer time than machine learning
methods, due to the dynamic execution. Additionally, the existing
approach using defence policies, e.g., [31], can detect but fail to
classify the detected malware.

Besides detection, none of aforementioned tools from security
domain focuses on attack analysis based on behavior modelling.
Knowing attack behavior details helps understand essences of var-
ious attacks. To further classify attacks, we treat detection of JS
malware as a behavior moodelling problem—abstracting and sum-
marizing common behaviors of various JS malware of the same
attack type. The key idea is to effectively represent variants of the
same attack type as an abstract behavior model, which could poten-
tially provide the semantics of attack behaviors like environment
detection, vulnerability exploitation and malicious payload execu-
tion. Given a suspicious JS sample, the execution of this sample
produces a concrete execution trace. Checking if this trace is ac-
cepted by the inferred abstract behavior model of each attack type
indicates whether this trace belongs to this certain type of attack.

The challenges in JS behavior modelling stem from two aspects:
(1) JS is a dynamic language with runtime evaluation and dynamic
typing, which rule out the static methods. To effectively analyse
its behavior requires a compact representation of JS dynamic ex-
ecutions and a powerful framework for dynamic analysis. (2) JS
malware families are not always categorized according to their at-
tack behaviors, sometimes according to the mode of code injection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
c© 2015 ACM. 978-1-4503-3620-8/15/07...$15.00

http://dx.doi.org/10.1145/2771783.2771814

48

(e.g., Trojan.js.iframe.* family launches various types of attacks).
A meaningful classification according to attack types is important,
especially for identifying new attacks. Such classification usually
requires human expertise, and is error-prone. Thus, an automated
way is needed to learn attack behaviors and do the classification.

In this study, to overcome the first challenge, we propose to an-
alyze JS program behaviors by focusing on browser-level system
calls. As system calls or actions are the interactions of a program
(i.e., the web page in this study) with its environment (i.e., the
browser in this study), it is effective to model program behaviors
based on system calls or actions [21][35]. In this work, we propose
to use Deterministic Finite Automaton (DFA) of the systems calls
to model attack behaviors, which is inspired by the work on pro-
gram behavior modelling [16]. The language accepted by the DFA
includes all possible malicious executions of this type of attack,
which captures the variants of the same attack.

To address the second challenge, we propose a dynamic analy-
sis framework, named JS∗, to automatically learn a DFA for each
JS attack type. First, given a set of (both benign and malicious)
execution traces of malicious JS, we perform a preprocessing to
simplify these traces by removing security-irrelevant system calls.
The simplified (abstracted) traces are called action sequences. Sec-
ond, we develop an online learning algorithm based on the L∗ al-
gorithm [17], which uses dynamic execution sequences to learn a
DFA of the JS malware. Lastly, the inferred DFA serves as an ab-
stract behavior model to identify variants of the modelled attack
type, which can be used for both malware detection and classifica-
tion. Our main contributions are as follows:

1. We treat detection and classification of malicious JS as a
behaviour modelling problem. We propose to use DFA to
model distinct attack types rather than behaviors of various
malware families. Our approach is effective in detecting ex-
isting attack types and identifying new variants.

2. We propose JS∗ as a dynamic approach to automatically learn
an accurate DFA from dozens of malicious samples on the
fly. Rather than using a large number of training samples as
in off-line learning, we combine data dependency analysis,
defense rules and JS replay mechanism to implement an on-
line teacher to efficiently answer if a given trace is malicious.

3. Based on real-world JS malware, we study 8 major attack
types involving 120 malicious samples and learn their attack
models. We test JS∗ with 10156 real-world JS samples. The
results show that JS∗ does not only outperform existing com-
mercial solutions in malware detection, but also detects mal-
ware variants and even new attacks. We publish the samples
and learned DFAs for public review [9].

2. JS ATTACK BEHAVIOR MODELLING
The prevalence of JS has attracted attackers to employ it for their

malicious intentions. Malicious JS takes advantages of vulnerabili-
ties or weakness of the client side with the aim to execute arbitrary
instructions on the client’s machine. According to Kaspersky Secu-
rity Bulletin [8], attacks targeting at JRE, Adobe Reader, browsers,
Adobe Flash account more than 95% of all recent attacks launched
by JS code. Following this trend, this study focuses on 8 infec-
tious and hazardous JS attacks [48], i.e., attack targeting browser
vulnerabilities (Type I), browser hijacking attack (Type II), attack
targeting Adobe Flash (Type III), attack targeting JRE (Type IV),
attack based on multimedia (e.g., images, videos) (Type V), attack
targeting Adobe PDF reader (Type VI), malicious redirecting attack
(Type VII) and attack based on Web attack toolkits (Type VIII). This

<a href=’javascript:
var file=Components.classes["@mozilla.org/file/local;1"].

createInstance(Components.interfaces.nsILocalFile);
var path = "/usr/bin/gnome-calculator";
file.initWithPath(path);
var proc=Components.classes["@mozilla.org/process/util;1"].

createInstance(Components.interfaces.nsIProcess);
proc.init(file);
proc.run(true,[path],1);
’>

Figure 1: The JS code of a web-based attack

System calls sci: (I|M |Np|Sp|Tr) Actions ai
nsIIOService2 | newURI | 3 | data:text/html;base64,PHN...; | void ⇒ a
nsIURI | scheme | 0 | | void ⇒ b
nsIPrefBranch | getComplexValue | 2 | intl.ellipsis;object; | void ⇒ n1

nsIPrefLocalizedString | data | 0 | | void ⇒ n2

nsIPrefBranch | getBoolPref | 1 | devtools.inspector.enabled; | void ⇒ c
nsIPrefBranch | getCharPref | 1 | preview.enable; | void ⇒ c
nsIIOService | newURI | 3 | data:text/html;base64,PHN...; | void ⇒ a
nsIURI | scheme | 0 | | void ⇒ b
nsILocalFile | initWithPath | 1 | /usr/bin/gnome-calculator; | void ⇒ d
nsIProcess | init | 1 | object; | void ⇒ e
nsIProcess | run | 3 | true;object;1; | void ⇒ f
nsISecureBrowserUI | init | 1 | object; | void ⇒ n3

Figure 2: A concrete execution trace and the common actions
{a, b, c, d, e, f} in the malicious traces of the attack in Fig. 1
categorization includes most of commonly seen JS attacks, e.g., in
the recent list of 500 malicious samples reported by WEB INSPEC-
TOR, we find that 411 (82.2%) fall into the above 8 types of attacks.

In dynamic approaches for security analysis of various attack
types, system calls are normally used to model the malicious be-
haviors [21][28]. The rationale is that malware triggering or pay-
loads are often resource oriented activities, e.g., creating a process.
In this work, we use FireFox as the targeted browser. In Firefox,
browser-level system calls are system calls to the XPCOM [10]
layer of Firefox (see Section 6.1). To better capture the malware
behavior involving the interactions with XPCOM components, we
use the lower level XPCOM method calls in this work rather than
method calls of JS APIs. Here, we formally define a system call as
a tuple sc = (I,M,Np, Sp, Tr), where I is the interface name of
sc, M is the method name, Np is the number of parameters, Sp is
the list of arguments, and Tr is the return type. A JS execution trace
is defined as a sequence of system calls π = 〈sc1, sc2, . . . , scn〉,
occurring in a chronological order.

EXAMPLE 1. We list the JS of an attack in Fig. 1. Due to the
vulnerability of CoolPreviews (Mozilla Firefox Extension) [5], via
a link pointing to a data URI which embeds the Cross-Site script-
ing payload, the malicious page can inject exploiting code that is
rendered and executed in the Chrome privileged zone1. Although a
calculator application is used in Fig. 1, arbitrary code can be exe-
cuted. Fig. 2 shows the related system calls in a malicious trace of
the attack in Fig. 1. Each row represents a security relevant system
call (see Section 4), where the five elements inside a system call
are splitted by “|”. The trace shown on the right column only con-
tains 12 security relevant system calls after filtering out the security
irrelevant ones from the original hundreds of system calls.

For end-host malware behavior modeling, existing studies use
two types of behaviour atoms [21], i.e., system call and action. The
types of models include 4 basic structures (a n-gram of, a sequence
of, a bag of, and a tuple of atoms), or even any combination of the
basic structures [21].

Kolbitsch et al. [35] pinpointed that sequences of system calls
are not suitable for attack behaviour modelling, as a new variant
1The Chrome privilege grants the JS code the permission to do everything in browser,
which is similar to the root permission in OS. By default, JS is not allowed to create a
file or a process outside the sandbox with Chrome privilege.

49

Figure 3: The general work-flow of our approach JS∗ to mod-
elling the behaviors of an attack type
can be easily crafted by reordering of the code to achieve the same
goals. On contrary, bags of or tuples of atoms totally ignore orders
or dependencies among atoms. Thus, Kolbitsch proposed to model
program behaviour in a behaviour graph, which is essentially a data
dependency graph of system calls at runtime. In behaviour graph,
two continuous system calls with no control or data dependency
(no source-sink data flow) are considered isomorphic. Thus, the ra-
tionale is two-fold: system call sequence is not resilient to malware
variants with reordered system calls, while bag of system calls may
be too relaxed and introduce false positive cases. Behaviour graph
essentially models an attack using a bag of system calls together
with their data dependency. As there exist many equivalent permu-
tations of system call sequence for system calls in the same control
block, behavior graph provides an effective data dependency model
among system calls. However, graph based matching of behavior
graphs [35] can be computationally costly for malware detection.

Note that this issue of JS behaviour modelling has not been in-
vestigated in depth previously. Similar to using finite state au-
tomata (FSA) in modelling normal behaviour via Linux system
calls [44], we propose to use DFA to model different JS attack types
based on browser-level actions. Different from [44], our contribu-
tion is to implement an on-line teacher to perform active learning.

3. APPROACH OVERVIEW
The workflow of our approach shown in Fig. 3 contains several

steps. Firstly, given the variants of an certain attack, we get both
of benign and malicious execution traces by running these variants
in the instrumented browser. Traces from malware variants of the
same attack, not from benignware or various attacks, are used for
training, as JS∗ targets at one type of attack each time when ap-
plied. Traces from general benignware may be irrelevant to the
modelled attack, or even introduce noise for model learning. With
the training traces from malware variants, the preprocessing step
filters out security-irrelevant system calls and extracts actions from
traces. Here, what we refer to as actions are high-level operations
(e.g., creating a process) that can be implemented by different con-
crete system calls to achieve a meaningful goal [19][21]. Subse-
quently, action sequences converted from execution traces serve as
the training set for the JS∗ learning (see Section 4).

In this study, the expected attack model is represented in form
of a DFA D with a fixed alphabet Σ (i.e., common actions ex-
tracted from malicious training traces). To inferD, the JS∗ learning
module interacts with the polynomial-time JS∗ teacher via asking
membership and candidate queries to make the observation table
closed and consistent (see Section 5). The teacher answers mem-
bership queries effectively based on a combination of defense rules,
data dependency analysis and replay mechanism (see Section 5.1).
By regression testing and random sampling techniques, JS∗ teacher
can answer candidate queries efficiently (see Section 5.2).

Finally, the learned DFA serves as an abstract attack model, which
can be used to identify the attack type of the captured traces from
suspicious variants. However, there may exist some action se-

Algorithm 1: extractCommonActions
input : Sπ = {π1, π2, ...πn}, a set of malicious system call

traces
output: M , the map whose key is an action and the value is

the set of system calls abstracted by this action.
Initially empty.

output: Σ, the set of common actions relevant to the attack
1 foreach trace π ∈ Sπ do
2 foreach system call sc ∈ π do
3 if ∃ ak ∈M.keys • IsSameAction(ak, sc) then
4 M.get(ak).add(sc) ;
5 else
6 create a new action an according to sc ;
7 M ←M ∪ {(an, sc)} ;

8 Σ← GetAction(π1,M) ;
9 foreach trace π ∈ {π2, . . . , πn} do

10 Σ← Σ ∩GetAction(π,M) ;

quences that are non-deterministic, i.e., the same action sequence
may be malicious or benign, depending on its arguments. In Sec-
tion 5.3, we explain the inferred DFA and present a refinement for
the DFA if a non-deterministic action sequence is found.

4. TRACE PREPROCESSING
We start our approach by capturing browser-level system call

traces during loading and rendering a web page through instrument-
ing the browser (see Section 6.1 for implementation details). Each
recorded trace contains thousands of system calls, most of which
are irrelevant to browser security. To precisely and concisely model
attacks, removing security-irrelevant system calls and mapping the
rest similar ones into high-level actions prelude further analysis.

Irrelevant System Calls Filtering. To the best of our knowl-
edge, there is no official classification of XPCOM system calls in
terms of security. In this work, we record all system calls generated
during the process of launching the browser, loading and rendering
a totally blank web page. We consider system calls to these 667
(out of the 1948 interfaces in XPCOM [10]) basic and very com-
mon interfaces as no security risks, i.e., security-irrelevant system
calls, e.g., system call nsIDOMWindow.GetscreenY that gets the Y
coordinate of a window. Most of these 667 interfaces are related to
browser initialization and configuration. In our study, system calls
uncommonly appearing in normal browser launching are security-
relevant system calls, e.g., system call nsIProcess.run that executes
a process. Finally, relevant system calls are listed in our website[9].

Action Abstraction. Some system calls provide similar or iden-
tical functionalities, e.g., in Fig. 2, nsIPrefBranch.getBoolPref and
nsIPrefBranch.getIntPref get the Bool and Int type preference data;
nsIIOService1.newURI and nsIIOService2.newURI both construct a
new URI, respectively. Thus, we abstract system calls with similar
functionalities as the same type of action for the purpose of variants
detection. We name the actions alphabetically starting from ‘a’ in
this work. After the abstraction, malicious traces based on system
calls become abstracted action sequences. Due to multitasking of
the browser, each execution of the same JS code may produce dif-
ferent action sequences but with the identical attacking route. In-
tersecting these action sequences extracts common actions, making
visible common behaviours of malicious traces.

Algorithm 1 illustrates how system calls are mapped into actions
and then how common actions are extracted from the given set of
malicious traces Sπ . First, the map M is built from lines 1 to 7.
At line 3, each system call sc in π from Sπ is compared with each
key ak in M by calling IsSameAction to check the functionality

50

Malicious Action Sequences Sπ: Benign Action Sequences S′
π:

πm1 : 〈c.a.b.d.e.f〉 πb1 : 〈c.b.d.e.f〉
πm2 : 〈a.c.b.d.e.f〉 πb2 : 〈a.c.d.e.f〉
πm3 : 〈a.b.c.d.e.f〉 πb3 : 〈a.b.c.e.f〉
πm4 : 〈a.b.d.c.e.f〉 πb4 : 〈a.b.d.c.f〉
πm5 : 〈a.b.d.e.c.f〉 πb5 : 〈a.b.d.e.c〉
πm6 : 〈a.b.d.e.f.c〉 πb6 : 〈c.b.a.d.e.f〉
πm7 : 〈c.a.c.b.c.d.c.e.c.f〉 πb7 : 〈c.a.b.e.d.f〉
πm8 : 〈a.b.c.c.a.b.d.e.f〉 πb8 : 〈c.a.b.d.f.e〉

Figure 4: Representing traces as sequences of common actions
(πm8 is the counterpart of the trace in Fig. 2)
similarity, at Line 3. If the fully qualified name of sc is similar to
the fully qualified name of any system call in set M.get(ak), sc
belongs toM.get(ak). Being similar is satisfied if string similarity
according to Levenshtein Distance [30] is above a threshold, 80%
in our study [37]. We also refine the results of this step via the
manual check, considering the limited size of system calls involved
in each type of attack. Method M .get(ak) returns those system
calls abstracted by ak. If IsSameAction returns true, i.e., sc can
be abstracted by action ak, sc is added into M.get(ak) (line 4).
Otherwise, a new action an is created according to next available
alphabet (ASCII letter in our implementation) at line 6; and the pair
(an, sc) is added toM at line 7. Practically, action abstraction step
is manually verified, as the size of alphabet is small (see section 6).

After M is built up, method GetAction(π1 ,M) at line 8 col-
lects the actions in π1 and assigns to Σ. From lines 8 to 10, all
action sequences are iteratively used to build the set of common
actions Σ—actions appearing in all traces in Sπ .

Note that extracting common actions is only conducted on ma-
licious traces. Only after that, the available benign traces are rep-
resented as sequences of common actions. Suppose we collected 8
malicious and 8 benign concrete system call traces, we apply action
abstraction and intersection on these 8 malicious traces to build the
set of common actions, i.e., {a, b, c, d, e, f} in Fig. 2. Finally, in
Fig. 4 we represent these 16 traces in sequences of common actions,
which serve as the input for the JS∗ learning approach.

5. JS* LEARNING FRAMEWORK
This section is devoted to the explanation of the proposed JS∗

learning framework. Our approach is based on the L∗ algorithm,
which learns a DFA from a set of strings [17]. For string learning,
L∗ contains a teacher to answer membership queries and candi-
date queries via substring or regular expression matching. In our
study, we combine domain knowledge (e.g., defence rules), pro-
gram analysis (e.g., data dependency), and other techniques (e.g.,
replay mechanism, random sampling) to implement an effective
teacher to answer these two queries (see Sections 5.1 and 5.2).

DEFINITION 1. A deterministic finite automaton (DFA) is a 5-
tuple D = (S,Σ, δ, λ, F), where S is a finite set of states; Σ is
the finite set of input events—so called alphabets; δ is a transition
function defined as δ : S × Σ → S; λ ∈ S is an initial state;
F ⊆ S is a set of accept states.

First, we formally define DFA as above. In this study, we assume
that an attack model m is in the form of a DFA D, which has a
fixed alphabet Σ and a language L ⊆ Σ∗. The L∗ algorithm learns
a DFA C with a set of states S with the minimal size accepting the
same language L of D. During the learning process, a Minimal
Adequate Teacher (teacher for short) is entailed to answer the two
types of queries: membership queries and candidate queries. The
former asks whether a given trace (alphabetical sequence) should
be accepted by D, while the latter asks whether the given DFA C is
equivalent to D, i.e., accepting the same language. Thus, when the
learning stops, the inferred C is equivalent to the expected D.

Algorithm 2: membershipQuery
input : πa, a given action sequence, which cannot be null
output: true or false, if πa should be accepted by the

expected DFA.
1 if ∃πi ∈ Sπ • πi is a prefix of πa then
2 return true;
3 if ∃π′i ∈ S′π • πa == π′i then
4 return false;
5 if isEqualPermutation(πa, Sπ) then
6 return true;
7 if πa violates any defense rule then
8 return true;
9 return Replay(πa) ;

During learning, to store the results of membership queries, L∗

algorithm maintains an observation table (P,Q, T), where P ⊆
Σ∗ is a set of prefixes; Q ⊆ Σ∗ is a set of suffixes; and T : (P ∪
P · Σ) × Q 7→ {0, 1} is a mapping function such that if p · q is
a trace accepted by D, then T (p, q) = 1; otherwise (i.e., p · q is a
trace rejected by D), then T (p, q) = 0, where p ∈ (P ∪ P · Σ)
and q ∈ Q. The observation table categorizes the given traces
according to Myhill-Nerode Congruence [32].

DEFINITION 2. (Myhill-Nerode Congruence). For any two tra-
ces tr, tr′ ∈ Σ∗, they are equivalent, denoted by tr ≡ tr′, if tr ·q is
accepted byD iff tr′ ·q is accepted byD, for all q ∈ Σ∗. We denote
such equivalency by tr = [tr′]r and tr′ = [tr]r , considering tr
and tr′ are the representing traces of each other with respect to the
language L accepted by D.

In the L∗ learning process, the observation table (P,Q, T) should
be closed and consistent with the membership queries to reach a
candidate DFA. Being closed is satisfied when for all p ∈ P and
q ∈ Σ, there exists p′ ∈ P such that p · 〈q〉 ≡ p′. Meanwhile,
being consistent is satisfied when for any two trace p, p′ ∈ P
such that p ≡ p′, and also (p · 〈q〉) ≡ (p′ · 〈q〉) for all q ∈ Σ.
When (P,Q, T) is closed and consistent, a candidate DFA C is
constructed and denoted as C = (SC ,ΣC , δC , s

0
C , FC) such that

SC = P , ΣC = Σ, δC(p, q) = [p · q]r for p ∈ P and q ∈ Σ,
s0C = {λ}, and FC = {p ∈ P | T (p, λ) = 1}. Subsequently, the
L∗ uses C as the input DFA for a candidate query.

The teacher answers the candidate query by checking the equiv-
alence of C and the black box DFAD. If the answer is true, C is ex-
actlyD that needs to be modeled, and the learning terminates. Oth-
erwise, the teacher provides a counterexample for the L∗ to iden-
tify a witness suffix, which is a trace that—when appended to the
two other traces—provides enough evidence for these two traces
to be classified into different equivalence classes under the Myhill-
Nerode Congruence. After such witness suffix is identified, it will
be used by the L∗ to refine the candidate DFA C until C is equiva-
lent to D. Details on the L∗ algorithm can be found from [17]. It is
proved that for a regular deterministic language the L∗ only needs
asking at most n − 1 candidate queries and O(|Σ|n2 + n logm)
membership queries [17]. If the teacher answers membership and
candidate queries in polynomial time, the whole learning process is
completed in polynomial time.

5.1 Membership Query
An ideal implementation of the on-line teacher for membership

queries should be able to correctly answer if the system call se-
quence πa ∈ Σ∗ should be accepted (i.e., whether πa represents
an attack of the modelled type) in polynomial time. Practically,
it is infeasible to extract all possible traces for a JS program and
judge their maliciousness. Here, we propose a feasible and effi-
cient way to utilize defence rules, data dependency analysis, and

51

Algorithm 3: isEqualPermutation
input : Sπ = {π1, π2, ...πn}, a set of malicious action

sequences
input : πa, a given action sequence
output: true or false, if πa is an equivalent permutation

1 Seπ ← ∅ ;
2 foreach sequence πi ∈ Sπ do
3 Sdc = getDependencyClosure(πi) ;
4 Seπ ← Seπ ∪ getPermutations(πi, Sdc) ;
5 if πa ∈ Seπ then
6 return true;
7 return false;

also JS replay mechanism to answer membership queries on the
fly, as elaborated below.

5.1.1 Browser Defense Rule
Defense rules refer to security policies commonly used by the

mainstream browsers to detect malicious attacks. Violation of such
rules indicates possible security risks in existing studies [45]. Mozi-
lla mainly adopts permission relevant policies: the same origin pol-
icy (used in [31][33]), the Configurable Security Policies (CAPS) as
Mozilla built-in zone-based rules [6], and the signed-script policy
(used in [31][53]). In our study, these defense rules are applied to
the URL source, information and permission of executed JS code.
By combining these rules in the teacher, we can test a trace—a vio-
lation of any defense rule indicates that the tested trace is malicious.

Note that defense rules are mainly used to check the trace that
are tested by the JS∗ on the fly. Besides, using defense rules can
only indicate whether a trace is benign or not [31], but fail to model
the attack behaviors.

5.1.2 Data Dependency Analysis
Given the existing training traces, data dependency analysis is

adopted to find equivalent permutations (EPs) of an action sequence.
The assumption that the order of two mutually independent system
calls (or actions) does not matter is reasonable [21][35]. Thus, we
adopt this assumption and infer EPs via data dependency analy-
sis. For example, given malicious sequence π1 = 〈a1, a2, a3〉,
where a3 has data dependency2 on a1 and a2, denoted as {a3 ←
(a1, a2)}, we can infer π2 = 〈a2, a1, a3〉 is also malicious. So π2

and π1 are EPs.
Given a training set of malicious sequences Sπ and an unknown

system call sequence πa, Algorithm 3 shows how to test if πa is
an EP according to the sequences in Sπ . The basic idea is to get
the data dependency closures among actions inside a sequence πi
by invoking method getDependencyClosure(πi). In two steps,
this method builds the dependency closure3. Given πi, JS∗ gets
all direct dependencies among system calls inside this trace, from
which actions are abstracted. If two system calls have a direct data
dependency (see Section 6.1), the two relevant abstracted actions
have a direct data dependency. Second, this method propagates the
direct data dependency relationship among actions into a closed
transitive indirect data dependency. In the running example, this
method returns two closures {b ← a} and {(e, f) ← d}. As c
is independent, actually, πm1 to πm6 (and other similar sequences
only with different c positions) are all EPs.

By getPermutations , the mutually independent relation between
actions (e.g., a1 and a2 in the above case of π1, c and other ac-

2The data dependency is calculated based on the original system calls of the actions,
we omit the implementation details for the interest of space.
3A dependency closure is a transitive relationship among actions, and each in this
closure is directly or indirectly involved in data dependencies on others.

JEIS statement Action
1. nsIPrefBranch.getBoolPref("devtools.inspector.enabled"); ⇒ c
2. var nsIIOService2=Components.classes["@mozilla.org/network/

io-service;1"].getService(Components.interfaces.nsIIOService); N.A.
3. var nsIURI=nsIIOService2.newURI("data:text/html;base64,

PHNjcmlwd...",null,null); ⇒ a
4. nsIURI.scheme(); ⇒ b
5. var nsILocalFile=Components.classes["@mozilla.org/

file/local;1"].createInstance(Components.interfaces.nsILocalFile); N.A.
6. nsILocalFile.initWithPath("/usr/bin/gnome-calculator"); ⇒ d
7. var nsIProcess==Components.classes["@mozilla.org/

process/util;1"].createInstance(Components.interfaces.nsIProcess); N.A.
8. nsIProcess.init(nsILocalFile); ⇒ e
9. nsIProcess.run(true,[’/usr/bin/gnome-calculator’],1); ⇒ f

Figure 5: The JEIS statements reverse-engineered from action
sequence πm1 : 〈c.a.b.d.e.f〉
tions in the case of πm1) infers the equivalent permutations. All
EPs should not equal to an existing benign sequence, and then be
stored into a set for comparison with πa. A right match indicates
an EP. Practically, the calculation of Seπ from lines 1 to 4 in Al-
gorithm 3 is pre-built once as preprocessing. Due to the limited
length of action sequence and the small size of training sequences,
getPermutations is scalable in reality, e.g., for the partial DFA in
Fig. 8, there is the dependency closures: {n ← m ← l ← k ←
j ← i ← (g, h) ← f ← (c, d, e) ← b ← a}. Thus, (g, h) and
(c, d, e) are two sets of independent actions that lead to 12 EPs—
multiplied by 2 for (g, h) and 6 for (c, d, e).

Data dependency analysis is used to check the benignity of traces
on the fly in our teacher implementation. Based on dependency
closures inferred from malicious sequences, JS∗ identifies benign
sequences not holding these closures, and find malicious EPs. Se-
quences 〈a.b.d.e.f〉 (removing prefix c from πm1) and 〈c.a.b.d.f.e〉
(partial reordering of πm1), which satisfy dependency closures but
are unknown for benignity, will be tested with replay mechanism
as presented below.

5.1.3 Trace Replay
Replay mechanism is implemented to dynamically test malicious-

ness of an inquired trace during on-line learning. It is implemented
using JS’s Equivalent Intermediate Script (JEIS), which is the in-
termediate code rather than the source-code. The basic idea is to
manually craft a JEIS with Chrome privileges, according to a given
action sequence. We do not craft JEIS from scratch, but create a
JEIS by adding, deleting or reordering JEIS statements from the
reverse-engineered JEIS of existing training traces.

As explained at the beginning of this section, a new sequence
usually has a prefix or suffix added to or deducted from a pre-
vious sequence that has been tested in a membership query. For
example, during learning, a membership query checks sequence
〈a.b.d.e.f〉 (removing prefix c from πm1). To replay 〈a.b.d.e.f〉,
we get the reverse-engineered JEIS of πm1, then remove the inter-
mediary script relevant to c, and finally craft the expected JEIS that
contains statements 2-9 in Fig. 5. Executing this JEIS in JS engine
realizes replay mechanism for sequence 〈a.b.d.e.f〉. As replaying
this JEIS produces the same result as that of running JEIS of πm1,
we claim that 〈a.b.d.e.f〉 is also malicious.

JEIS execution produces three types of outcomes. First, JEIS
execution may trigger some defence rules, or some heuristic rules
that detect malware in the sandbox of JS engine [31], e.g., a JEIS
with system call nsIProcess.init whose origin is from an external
website violates CAPS, as its interface nsIProcess cannot be exe-
cuted without Chrome privilege. In case of running JEIS of πm1

and 〈a.b.d.e.f〉, we consider they are malicious and cause poten-
tial risks. Second, JEIS execution may cause some runtime excep-
tions or crashes. Such exceptions or crashes indicate that the re-
played sequence is infeasible rather than malicious, e.g., according

52

to JEIS of πm1〈c.a.b.d.e.f〉 in Fig. 5, we want to craft the JEIS of
〈c.a.b.d.f.e〉 that has a reversed order of e and f . Inverting e and
f , and running the new crafted JEIS (i.e., the JEIS statements in the
order of 〈1,2,3,4,5,6,7,9,8〉) causes an exception in the JS engine, as
nsIProcess.run (statment 9) is executed before nsIProcess.init (stat-
ment 8). So 〈c.a.b.d.f.e〉 is infeasible, and this infeasible sequence
means that the outcome is benign. Lastly, if JEIS execution fails to
produce any obvious resource oriented activities and violates no
rules, it is assumed benign.

5.1.4 Membership Query Algorithm
Given malicious action sequences Sπ and benign sequences S′π ,

e.g., the sequences in Fig. 4, Algorithm 2 describes the process
in answering the membership query regarding to the given action
sequence πa.

First, if any πi ∈ Sπ is a prefix of πa (line 1), i.e., πa equals to or
starts with πi, πa must be malicious. If πa equals any sequence in
S′π (line 3), πa must be benign. Then isEqualPermutation(πa ,Sπ)
method at line 5 defined in Algorithm 3 is called to check whether
πa is an EP, and a true answer means that πa is also a malicious
EP. The next step is to check if πa violates the defense rules in
Section 5.1.1 at line 7. Finally, method Replay(πa) at line 9 is
called to concretely execute πa using replay mechanism to verify
its benignity.

In our running example, an example of satisfying the check at
line 1 is action sequence 〈c.a.b.d.e.f.a〉, which is considered as
malicious as it starts with an existing malicious sequence πm1. An
example for isEqualPermutation(πa ,Sπ) at line 5 is to check
action sequences 〈c.a.b.e.f.d〉 and 〈a.b.c.c.d.e.f〉. According to
the collected traces like πm8 in Fig. 2, we found that action b has
data dependency on a; c is independent; meanwhile e and f have a
data dependency on d. Thus, 〈c.a.b.e.f.d〉 is not an equivalent per-
mutation of existing malicious sequences like 〈c.a.b.d.e.f〉. But
〈a.b.c.c.d.e.f〉 is malicious as it satisfies the identified data depen-
dency, similar to πm3 but with only one more independent c.

At line 7, our example in Fig. 1 does not violate any rule, as all
the scripts are from the same origin, and no signed-script is used.
Lastly, Replay(πa) at line 9 is effective in running the left un-
certain sequences ranging from simple ones 〈a.b〉 to those compli-
cated ones like 〈b.a.f.a.b.f.e.d.a.e.d.d.f〉 for membership query-
ing. Actually, Replay(πa) all returns false for these two queries,
as the two replayed sequences produce no malicious results (no re-
source oriented activities and no permission/rule violations).

5.2 Candidate Query
During learning, an intermediate DFA C is inferred after multi-

ple membership queries. To judge if C is equivalent to the expected
DFA D that accurately models the attack, an efficient algorithm is
required for the validity check in polynomial time. When a candi-
date query is evaluated, two types of counterexamples can be found
on C—false positives and false negatives. The former means that
a sequence accepted by C should be rejected by D, while the latter
means that a sequence rejected by C should be accepted by D.

Given Sπ and S′π in Fig. 4, Algorithm 4 illustrates how the
teacher answers the candidate query for the given C, based on re-
gression testing and random sampling testing. First, at line 1, each
sequence πi from the known sequence sets Sπ , S′π and the previ-
ously tested sequence set Soπ is input to membershipQuery and
also C.isAccepted(). Method membershipQuery(πi) at line 2
returns true if πi is accepted by D. If C and D show different
acceptance results for πi, a counterexample πi is found and re-
turned. Second, a random walk function randomWalks() is used
to generate Snπ , a new set of random sequences that include both

Algorithm 4: candidateQuery
input : C 6= NULL, the learned candidate DFA
input : Soπ , the set of old sequences that have been tested in

previous calls of candidateQuery, initially being ∅
before any candidateQuery is called

output: πce, an counterexample sequence found

1 foreach trace πi ∈ (Sπ ∪ S′π ∪ Soπ) do
2 if membershipQuery(πi) 6= C.isAccepted(πi) then
3 return πce ← πi;

4 Snπ ←
randomWalks(C, C.stateSize ∗ times, C.stateSize+
extraLenLmt) ;

5 foreach trace πi ∈ Snπ do
6 Soπ ← Soπ ∪ {πi};
7 if membershipQuery(πi) 6= C.isAccepted(πi) then
8 return πce ← πi;

9 return πce ← NULL ;

accepted and rejected ones on C. The rationale of using random
walk is that sequences on C cannot be enumerated due to poten-
tial loops. randomWalks() at line 4 has three parameters, where
C is the candidate DFA; C.stateSize*times denotes the number
of generated sequences and times is an input constant to multi-
ply; C.stateSize+extraLenLmt is the maximum allowed length
of generated sequences and extraLenLmt is the extra length that
can be larger than C.stateSize . Here, C.stateSize denotes the size
of total states in C. Then, each sequence πi in Snπ is also given to
membershipQuery() and C.isAccepted() for acceptance check—
an inconsistency indicates a counterexample. Note that any tested
πi from Snπ is added to Soπ , which is used for regression testing in
answering the next candidate query. Finally, if no counterexample
is found, NULL is returned and the learning process stops.

In our running example, candidate queries are asked twice. The
first candidate DFA C1 in Fig. 6 (a) is inferred when P in the obser-
vation table only contains {λ, a, b, c, d, e, f} with one state 0. For
C1, Algorithm 4 returns a malicious sequence πm1 : 〈c.a.b.d.e.f〉
as a counterexample for further learning. Afterwards, a candidate
DFA C2 in Fig. 6 (b) is learned. According to regression testing and
random sampling testing in Algorithm 4, no counterexample for C2
is found—C2 is equivalent to the expected D.

5.3 The Learned DFA and Refinement
Given the 16 sequences in Fig. 4, JS∗ undergoes 622 times mem-

bership queries and 2 times candidate queries (with times=5 and
extraLenLmt=5 for method randomWalks in Algorithm 4), and
infers a DFA D to model the attack—or equivalently a regular lan-
guage L = (c)∗ · a · (c)∗ · b · (c)∗ · d · (c)∗ · e · (c)∗ · f · (c)∗
over Σ = {a, b, c, d, e, f}. To apply this DFA to detect malicious
variants of this attack, a trace from a suspicious variant is collected
and preprocessed to be converted into an action sequence π over Σ.
An acceptance of π on D suggests that π is from a malicious trace.

The sequences in Sπ in Fig. 4 are all deterministic (being cer-
tainly malicious), and produced by the script with fixed arguments
in Fig. 1. In practice, the same sequence of actions might be some-
times malicious and sometimes benign, depending on the argu-
ments of the calls. For instance, if the last argument of the state-
ment proc.run(true,[path],1) in Fig. 4 is changed from “1” to “0”.
Executing the new code can produce the same sequences as those
old ones in Fig. 4, and all data dependencies inside these new se-
quences still hold. But the new sequence π′m1 : 〈c.a.b.d.e.f〉 is
benign and creates no process, since inside π′m1 the last argument
of action f is “0”, which makes nsIProcess.run include zero ar-
gument from the argument list. One way to solve the problem is

53

(a) candidate DFA
C1

(b) candidate DFA C2

Figure 6: The learned candidate DFA C1 and C2
to model system calls with different arguments as different actions,
for instance, we can represent the above as: πm1 : 〈c.a.b.d.e.f(1)〉
and π′m1 : 〈c.a.b.d.e.f(0)〉. To refine the DFA for such case, we
derive new actions fm and fb from current action f . Here, fm
refers to the action f({s1, ...sn}) with the argument set {s1, ...sn}
that produces malicious outcome like f(1). Similarly, fb refers to
the action f with arguments that produce benign outcome. Then
with the new Σ′ = {a, b, c, d, e, fm, fb}, JS∗ is applied again on
the training sequences to learn a refined DFA. Thus, JS∗ supports
refinement for nondeterministic sequences in a reactive way.

6. IMPLEMENTATION AND EVALUATION
We conduct experiments on real-world JS malware to study 8

popular attack types to evaluate JS∗. We aim at answering the fol-
lowing 4 questions in our evaluation:
RQ1. Do our learned DFAs correctly and effectively model com-

mon and abstract behaviors for each attack type?
RQ2. Does JS∗ perform efficiently in the learning process in terms

of the running time?
RQ3. Is JS∗ accurate in the malware detection, compared to other

research prototypes and commercial anti-virus products?
RQ4. Are these learned DFAs useful in detection of emerging ma-

licious variants and new attacks by unknown malware?
RQ1 and RQ2 examine the effectiveness and efficiency of JS∗.

RQ3 and RQ4 are to investigate the usefulness of the inferred DFAs.

6.1 Implementation
We implement JS∗ based on instrumentation to Firefox kernel.

There are three layers in Firefox’s JS execution environment. At
the upper layer, Firefox JS engine SpiderMonkey interprets JS code
and invokes the related low layer libraries via XPConnect, which
provides interaction between SpiderMonkey and XPCOM. As XP-
Connect bridges the top and bottom layer, we hook calls to meth-
ods in XPConnect interfaces as JS browser-layer system calls. By
comparing the affected objects (e.g., the returned object, changed
objects or arguments) of two sequential system calls sc1 and sc2
in terms of object type and memory address, the data dependency
{sc1 ← sc2} is checked. In JS∗, we propagate data dependency
check using data flow analysis to calculate transitive dependency
relationship used in data dependency analysis (Section 5.1.2).

6.2 Data Preparation and Setup
To evaluate JS∗ on the eight popular types of JS attacks men-

tioned in Section 2, we collect 276 distinct malicious samples out
of more than 1000 real-world malware4 that originate from various
sources: 40 unique samples from VXHEAVEN [3]; 66 unique ones
from OPENMALWARE [2]; and we also manually collected 170
samples from the most recent list of malicious websites reported
by WEB INSPECTOR [12]. We manually inspect these 276 samples
to verify their maliciousness. Besides, we collect 10000 benign
4There is a large number of duplicated and expired malware in our collected samples.

Table 1: The learning results of JS∗
Attack Type |S| |Σ| #M-Q #C-Q Time(s) Total Time(s)
Type I 67 29 132,084 4 1.83 945
Type II 77 11 33,585 7 0.501 634
Type III 54 11 41,459 8 4.37 902
Type IV 74 28 158,120 4 1.95 1,068
Type V 121 29 468,124 6 8.33 2,768
Type VI 50 11 34,266 4 0.551 498
Type VII 466 15 309,277 20 22.425 4,597
Type VIII 74 11 28,480 12 0.563 993

samples from the Alexa [1] top 100 web sites, none of which is
reported as malicious by the 56 tools provided by VIRUSTOTAL5.

Among the total 276 malicious samples, we select 120 samples
(≈40%), i.e., 15 for each attack type, as the training set. Before JS∗

learning, each sample is executed 10 times to get 10 traces, most
of which differ from each other due to different browser context at
the time of execution. These traces are converted to similar action
sequences after preprocessing. Among 8 different attack types, at
least 37% (for Type V) to at most 60% (for Type VII) of traces are
unique. We apply JS∗ separately for 8 attack types based on the
traces executed from their training samples. To verify the inferred
DFAs, we use the remaining 156 malicious samples, most of which
are recently reported by WEB INSPECTOR, together with the 10000
benign samples as the testing data set for predication.

The experimental environment is a PC with Intel i7 2600 3.4GHz
CPU and 8GB memory. The system environment is Ubuntu 12.04
and the Firefox that we instrumented in JS∗ is 17.0.

6.3 JS* Learning Evaluation
The statistics of the learning process as well as the inferred DFAs

are listed in Table 1. |S| denotes the size of the states inside the
inferred DFA; |Σ| denotes the size of the alphabetic of the DFA
(the size of common actions); #M-Q refers to the number of called
membership queries; #C-Q refers to the number of called candidate
queries; Time(s) denotes the core time (in seconds) of learning pro-
cess; Total Time(s) denotes the total time (in seconds) of learning
process, including trace generation and replay.

RQ1: Correctness. We validate the correctness of these DFAs
from two aspects: (1) identifying the high level semantics by check-
ing their alphabets, and (2) interpreting the accepted path of DFAs
with hints in the descriptions of the CVE used by the attack.

First, checking the comparatively small set of common actions
Σ briefly tells whether common essential behaviors of the same at-
tack type are captured and modelled. From our observation, the set
of common actions (Σ) for each attack type is reasonable and rele-
vant to the attack type. For example, Type I attack can be generally
divided into three steps: first, putting the shell code in a predictable
memory location; then triggering an exploitable crash (modelled
by common actions like nsIAppStartup.trackStartupCrashEnd and
others in the alphabet of Type I); at last, the shell code will be ex-
ecuted to perform the attack, invoking file operations system calls
(modelled by common actions nsIFile.append, etc).

Second, we check accepted traces of Type VI attack DFA and
identify five steps: downloading malicious pdf file, executing em-
bedded JS to scan vulnerability, exploiting the vulnerability, exe-
cuting payload, and actual sabotage. The detailed alphabet of each
learned DFA and the explanations can be found in our website [9].

We observe that the eight inferred DFAs share some common
parts, e.g., payloads executing. Generally, payloads include execut-
ing arbitrary command, binding shell or reversed shell using TCP,
etc. In Fig. 7, we illustrate the common behaviors of binding shell

5To our best knowledge, JSAND is the only open service for JS malware detection,
and VIRUSTOTAL is powered by updated versions of mainstream anti-virus products.

54

Figure 7: The DFA of binding shell using TCP, which serves a
partial DFA of all attack types
or reversed shell using TCP, after the exploit for each correspond-
ing attack is done.

The unique parts of an inferred DFA model the essential attack
behaviors of the corresponding attack type. In Fig. 8, we show
a fraction of Type I DFA. This fraction exploits the CVE-2013-
1710 vulnerability. Specifically, this attack invokes system call
crypto.generateCRMFRequest to enable remote attackers to exe-
cute arbitrary JavaScript code or conduct cross-site scripting (XSS)
attacks via vectors related to Certificate Request Message Format
(CRMF) request generation. The original trace contains 1,236 sys-
tem calls and has 12 equivalent permutations with the same set of
actions. However, with our JS∗ learning approach, the DFA in Fig.
8 contains only 14 actions and 19 states. Thus, our inferred attack
behavior models in form of DFA are concise yet accurate, without
loss of the essence of attack.

A notable case is that the DFA of malicious redirecting attack
(Type VII) has 466 states. A possible explanation is that samples of
Type VII attack used for learning are less similar than samples of
other attack types. Thus, 15 dissimilar samples infer a DFA with
a small alphabetical size but a large size of states, which does not
necessarily means a bad modelling result. On contrary, it suggests
that there exist many traces from this DFA to be accepted—more
possible variants of this attack type. Such explanation is backed
up by the fact that malicious redirecting attacks are simple with a
small set of common behaviours (|Σ| =15), but flexible with possi-
bly enormous variants: 986 out of totally 1300 malicious JS sam-
ples provided by VXHEAVEN are drive-by-download attacks that
generally relate to Type VII attack.
Effectiveness. Besides manual observation, we empirically vali-
date the usefulness of the DFAs by conducting predication. On the
testing set of 10000 benign and 156 malicious samples, each sam-
ple is executed 10 times to get different traces. If any trace is ac-
cepted by one of eight learned DFAs, the corresponding sample is
detected as one variant of the attack that is modelled by the matched
DFA. Totally, JS∗ correctly detects 149 out of 156 (95.51%) mali-
cious samples and 9957 out of 10000 (99.57%) benign samples.
The distributions of 7 FN cases (4.49%) and 54 FP cases involv-
ing 43 distinct benign samples (0.43%) are listed in column JS∗
FN and JS∗ FP of Table 26, respectively. Among 43 distinct be-
nign samples, 11 (54-43) are falsely accepted by two DFAs, e.g., 2
benign samples are accepted by DFAs of both Type VII and VIII,
which share commonality — toolkits based attacks utilize abnor-
mal redirection iteratively to evade detection. Thus, JS∗ attains low
overall FN (≈5%) and FP (≈0.5%) rate for all 8 attack types.

6The reason to put Total at the first row is that there is no type-based detection in Jsand
or the 56 tools on VirusTotal. We separately list the 8 type-specific rows to show how
attack types affect detection results.

Table 2: The predication results of JS∗, JSAND and 56 tools
provided by VIRUSTOTAL

Type JS∗ JSAND
V.T.

FP FN T(S) FN T(S)
Total 43∗ /10000 7 /156 1.36 95/156 4.8 21
Type I 4/10000 0/15 1.31 12/15 3.3 19
Type II 9/10000 1/15 1.34 12/15 5.9 21
Type III 3/10000 0/18 1.50 13/18 4.2 17
Type IV 7/10000 1/15 1.32 9/15 3.3 20
Type V 11/10000 2/20 1.33 12/20 3.4 21
Type VI 8/10000 0/23 1.32 2/23 8.3 34
Type VII 3/10000 1/23 1.26 18/23 3.4 15
Type VIII 9/10000 2/27 1.47 17/27 5.3 21

RQ2: Performance. The results reported in column Time(s) of
Table 1 show that our approach is highly scalable in the core learn-
ing process. The required learning time is generally proportional to
the state number and the alphabetical size of the learned DFA. Col-
umn Total Time(s) includes the time used for trace generation and
replay, which is the major overheads for dynamic approaches. As
reported in [42], CUJO takes averagely 500 ms to analyze a web-
page in dynamic feature extraction. In JS∗, it averagely takes 1
second to generate or replay one trace, for a given script snippet.

Owning to the step of preprocessing, a small alphabet can be
built from the execution traces by filtering security-irrelevant sys-
tem calls out and extracting common actions from traces. Alpha-
betical sizes (|Σ|) of the 8 learned DFAs are all less than 30, and 5
out of 8 DFAs even have |Σ| less than 16. Usually, a small value of
|Σ| leads to a small number of raised membership queries and can-
didate queries, e.g., DFAs with |Σ| ≤ 11 have #M-Q≤ 42K and
#C-Q≤ 12. For these DFAs with |Σ| ≤ 11, the core learning pro-
cess can be accomplished in 5 seconds. For other types except Type
VII, it takes only less than 9 seconds. The most time-consuming
one is for Type VII. Considering large values of #M-Q and #C-Q,
it is fast to finish core learning in 22 seconds. It is also acceptable
to finish all, including trace generation and replay, in 4597 seconds.

Another observation is that JS∗ requires a large value of #M-Q
but a small value of #C-Q. The explanation is that action sequences
in the training set are quite different from each other in terms of
length or substring. In contrast, sequences πm1 to πm6 and πb1 to
πb6 in Fig. 4 show high similarity in length or substring, with dif-
ferent positions of action c. These similar sequences in our running
example quickly lead to a closed and consistent observation table,
which makes #M-Q= 622 and #C-Q= 2. However, for these 8
real attack types, there are no such ideally similar sequences that
lead to quick convergence to a closed and consistent observation
table. Thus, it usually needs a large number of membership queries
to reach a candidate DFA.

RQ3: Tool comparison. We compare JS∗ with the open JS mal-
ware detection service JSAND 2.3.6 [7][26] and VIRUSTOTAL [11],
an online malware detection service powered by 56 mainstream
anti-virus products. The comparison mainly focuses on FN rate
and average predication time. We do not compare FP rate, as 1000
benign samples are verified by the union of results from JSAND
and 56 tools on VIRUSTOTAL—no FP case in benign samples for
JSAND and 56 tools on VIRUSTOTAL.

Totally, JSAND7 correctly detects 39.1% (61/156) malicious sam-
ples, and 95 FN cases are not evenly distributed among the 8 types
(see Table 2). Among the 8 attack types, JSAND yields the lowest
FN rate (8.7%) for Type VI, and the highest FN rate (80%) for Type
I and Type II attack. As JSAND is a dynamic detection tool, due
to the limit of the used honeypot, it may miss samples from Type I

7As JSAND uses on dynamic analysis, we submitted each sample ten times. If any
submission reports that the sample is malicious or suspicious, we consider it malicious.

55

0...

1
a

15

b,c,d,e,f,g,h,i,j,k,l,m,n

a,c,d,e,f,g,h,i,j,k,l,m,n

2

b

a,b,c,d,e,f,h,i,j,k,l,m,n

8

g

a,b,f,g,h,i,j,k,l,m,n

3

c

17

d

19e

a,b,c,f,g,h,i,j,k,l,m,n

4
d

16e

a,b,d,f,g,h,i,j,k,l,m,n

c
18e

a,b,e,f,g,h,i,j,k,l,m,n

c

d
a,b,c,d,f,g,h,i,j,k,l,m,n

5e

a,b,c,e,f,g,h,i,j,k,l,m,n

d

a,b,c,d,e,g,h,i,j,k,l,m,n

6
f

a,b,c,d,e,f,h,i,j,k,l,m,n

7

g a,b,c,d,e,f,g,i,j,k,l,m,n

h
a,b,c,d,e,f,g,h,j,k,l,m,n

9
i

a,b,c,d,e,f,g,h,i,k,l,m,n

10
j

a,b,c,d,e,f,g,h,i,j,l,m,n
11

k

a,b,c,d,e,f,g,h,i,j,k,m,n

12
l

a,b,c,d,e,f,g,h,i,j,k,l,n
13m

a,b,c,d,e,f,g,h,i,j,k,l,m
14n

a,b,c,d,e,f,g,h,i,j,k,l,m,na,b,d,e,f,g,h,i,j,k,l,m,n

c

a ⇒ nsIDOMCrypto.generateCRMFRequest()
b ⇒ nsIHttpProtocolHandler.userAgent()
c ⇒ nsIDOMNavigator.userAgent()
d ⇒ nsIDOMNavigator.platform()
e ⇒ nsIDOMNavigator.buildID()

f ⇒ nsISocketTransportService.createTransport()
g ⇒ nsISocketTransport.openOutputStream()
h ⇒ nsISocketTransport.openInputStream()
i ⇒ nsIInputStreamPump.init()
j ⇒ nsIInputStreamPump.asyncRead()

k ⇒ nsIDocShell.busyFlags()
l ⇒ nsIDocShell.currentDocumentChannel()
m ⇒ nsIHttpChannel.responseStatus()
n ⇒ nsIHttpChannel.isNoStoreResponse()

Figure 8: The partial DFA of Type I attack, which models the exploit to CVE-2013-1710

Table 3: Detection Ratio of our approach and other tools on
156 malicious samples in the testing data set

Tool Detection % Tool Detection %

JS* 95.51% MCAFEE 57.05%
AVAST! 81.41% JSAND 39.10%
GDATA 73.72% TREND 30.77%
AVG 73.08% SYMANTEC 28.21%

BITDEFENDER 71.15% CLAMAV 12.82%
F-SECURE 69.87% PANDA 1.92%

KASPERSKY 67.95%

and Type II, which are platform specific and not easy to trigger.
Column V.T.8 in Table 2 denotes the average number of tools that

detect each malicious sample, among 56 tools provided by VIRUS-
TOTAL. For each of 156 malicious samples, on average 21 (37.5%)
of 56 tools can successfully detect it. We also observe that on av-
erage 34 (60.7%) of 56 tools can detect each of Type VI samples.
This observation indicates that 56 tools on VIRUSTOTAL can gen-
erally better detect Type VI attacks than others. This observation is
consistent with previous finding that JSAND has the lowest FN rate
(8.7%) for Type VI. Among the 8 types, on average only 15 tools
(26.8%) can detect each of Type VII attacks. Thus, Type VII attack
is difficult to detect for state-of-the-art tools, due to its flexible at-
tack behaviors and enormous variants. This point is supported by
the complexity of the inferred DFA of Type VII.

To see the capabilities of state-of-the-art tools, in Table 3, we test
the detection ratio of the open-source anti-virus tool CLAMAV [14]
and 2014 best reviewed anti-virus products [15]: AVG, AVAST!,
BITDEFENDER, F-SECURE, GDATA, KASPERSKY, MCAFEE, PAN-
DA, SYMANTEC and TRENDMICRO. On the testing set of 156 ma-
licious samples, the best tool AVAST! achieves a detection ratio
of 81.41%. Other tools perform even worse. We manually inspect
FN cases for JS∗ and other tools. One sample that belongs to Type
VII is missed by both JS∗ and VIRUSTOTAL, as it targets at mobile
platform and fails to launch the attack in our testing environment.

According to the JSAND’s report, we calculate the predication
time by deducting the analysis starting time from the report gener-
ation time. Averagely, it takes 4.7 seconds for JSAND to finish the
execution and predication of one sample (see column JSAND T(s)
in Table 2). In contrast, JS∗ takes averagely 1.36 seconds to execute
the tested sample and check the trace with 8 learned DFAs. Thus,
the predication time was reduced by 71% in JS∗. For predication
time of the 56 tools, VIRUSTOTAL runs them in parallel and sets
a timer (1 minute) to prevent no response. As results from differ-
ent tools are dynamically added to the result page, according to our
observations, most tools can finish the predication in 5-10 seconds.

RQ4: Detecting variants. The predication results show the ca-
8We also submitted each samples to VIRUSTOTAL five times in Dec. 2014, and the
results reported by VIRUSTOTAL were consistent for different submissions.

pability of JS∗ in detecting malicious variants of the same attack
type, as the 120 training samples used for learning share quite low
textual similarity with the 156 testing samples. We use code clone
detection tool CloneMiner [18] and fail to detect sample pairs that
have file-level textual similarity above 30% (due to different ex-
ploits and obfuscation). Thus, owing to the nature of dynamic anal-
ysis of JS∗, syntactic obfuscation poses no challenge to JS∗.
Detecting new attack. Besides the DFAs, we also test the useful-
ness of the partial DFAs. Among the 156 testing samples, an new
attack that exploits CVE-2014-1580 is missed by JSAND and other
56 tools. Our 8 inferred DFAs also fail to accept its traces. How-
ever, the partial DFA in Fig. 7 can detect it, as the payload execution
part of its traces is accepted by the DFA. Thus, the partial DFAs can
also be used for fine-grained behavior identification. In this case,
payload execution helps to detect the new attack, but cannot clas-
sify according to exploit type. Last, based on the partial DFAs, we
manually craft 8 malicious samples for each attack types, by com-
bining different exploits and payloads. These new crafted ones can
fail existing tools, e.g., on averagely 23 tools on VIRUSTOTAL can
detect the crafted, while originally 33 tools detect them averagely.
The partial DFAs and crafted samples are also available in [9].

6.4 Discussion
DFA or stateful typestate? To sum up, the experiments have

shown the effectiveness of JS∗ in modelling attack behaviors and
predicating variants. JS∗ generally works well for malicious at-
tacks with clear and representative common attack actions, e.g.,
Attack targeting JRE and Attack based on multimedia (e.g., images,
videos). According to our controlled experiments, the traces gener-
ated by a handful of unique and representative samples can help JS∗

to efficiently infer a DFA. Currently, we only uses the arguments
of system calls for data analysis, not for argument based behavior
modelling. The rationale is twofold: (1) We model JS attack based
on system calls, not JS APIs. System calls work at the lower level
than JS APIs. The same code snippet (with the same APIs) leads to
different low level system call traces. Thus, system call traces es-
sentially are reflection of APIs together their arguments. (2) In real-
ity, these 276 malicious samples mostly can launch the attack with
the fixed built-in arguments, without the interaction or input from
users. In our previous pilot study, we found argument-based be-
havior modelling requires stateful typestate (DFA with guard con-
ditions for transitions). According to [50], a stateful DFA is good
at modelling behaviors of simple data-rich program with only 2 or
3 actions. However, in our study, considering the alphabetical size,
inferring typestate is not scalable but prone to path exploration.

DFA decomposition. Currently, we model major behaviors of
an attack type in one DFA, including vulnerability exploiting and
payloads execution. For each step, there might be several different
behavior patterns, e.g., different payloads executions in Fig. 1 (exe-

56

cuting arbitrary code in victim computer) and Fig. 7 (binding shell
using TCP). We initially manually identify such patterns from one
DFA. Then we convert patterns and other DFAs into directed cycle
graphs, and then we apply GENERICDIFF [51] to do graph match-
ing — checking if these patterns exist in other DFAs. We also ex-
tent GENERICDIFF for sub-graph isomorphism to extract possible
patterns (similar partial DFAs) from 8 inferred DFAs. Some found
patterns are also reported in [9]. In this study, we treat attack be-
havior modelling in a top-down way — tracking the whole trace of
an attack to model and classify. In other study on mining API usage
patterns [40], behavior modelling is done in a bottom up way.

6.5 Threats to Validity
There are several threats to validity. First, the inferred mod-

els are based on dozens of representative variant traces confirmed
by VXHEAVEN, OPENMALWARE and WEB INSPECTOR. Thus,
the sample of the collected traces directly affect the learning re-
sults. To address this problem, we need to further investigate the
impact of sample size and representativeness on the results. Sec-
ond, the parameters used for the Levenshtein distance similarity in
Section 4 are commonly used in code clone similarity analysis [37],
i.e., a threshold of 80% similarity in our study. Parameters for ran-
domWalks in Algorithm 4 are the same as those used in [50]. Fur-
ther investigation is needed to see the effects of parameters. Lastly,
the external validity is that the results are observed from the 8 spe-
cific JS attack types. Due to the greatly distinct natures of differ-
ent JS attacks, the results of this study may not be applicable to
malware whose malicious behavior are not reflected by system call
invocation. We remark that this is one assumption of this work.

7. RELATED WORK
System-call based behaviour modelling and malware detec-

tion. Existing studies [36][43][49] have utilized system calls in
dynamic analysis to detect abnormal behaviours, such as attacks
or intrusions. However, these studies failed to model program be-
haviours, until Sekar et al. [44] modelled normal executions (sys-
tem call sequences) of a process as a Finite State Automata (FSA)
when most normal traces are available. [44] uses a heuristic algo-
rithm to model normal behaviours rather than learning using the
L∗ algorithm, and the modelling process is not in polynomial time.
Kolbitsch et al. [35] modelled program behaviour using a direct
acyclic graph of system calls along with their data-dependent pa-
rameters, and applied graph matching algorithm on these graphs
to identify abnormal ones. Christodorescu et al. [25] further de-
fined a new graph representation of program behaviour and applied
a machine learing algorithm to mine malware specifications from
dependence graphs of the malicious and benign programs. Besides,
layered system call graph in [39] and tainted argument analysis for
selected calls in [46] are proposed for malware detection.

A recent quantitative study [21] investigated how the choice of
system-call based behaviour modellig influences the quality of de-
tection results. They found that n-gram is the best model for low-
level system calls, whereas bags and tuples without order informa-
tion yield best results when high-level actions are introduced. How-
ever, in [21], other models (e.g., graph or DFA) are not discussed
and the authors acknowledged the impossibility of generalizing ob-
served results in a closed form. JS∗ uses action sequences to model
attack behaviours in the form of DFA. Although orders of actions
matter in the DFA, the DFA learned by JS∗ accepts the equivalent
action sequences derived from the corresponding tuples or bags of
actions, owning to the analysis on EPs of action sequences.

Inferring behavior model by L∗. Several studies adopt the L∗

to infer behavior, but not attack behaviors. Chia et al. [24] pro-

posed to infer botnet command and control protocols from the se-
quence of messages sent over the network by using the L∗ algo-
rithm. Chia et al. [23] also presented an approach to infer an ab-
stract model of the analysed application in form of DFA, and to
then apply symbolic execution for bounded state-space exploration
by virtue of the guidance provided by the inferred DFA. Xiao et
al. [50] applied L∗ on method call sequences in randomly gener-
ated testing code to model behaviors as stateful typestate, which is
suitable for data-rich programs, i.e., stack, piped stream, etc.

Answering membership queries depends on domain knowledge,
e.g., in [50] for behavior learning, if an exception is thrown for
the generated testing code, the corresponding method sequence is
not accepted; in [23] for protocol inference, if a message exchange
trace violates the protocol, the given trace is not accepted. In our
study, if malicious results are produced or defense rules are vio-
lated, the tested action sequence is accepted. Candidate queries can
be answered in three ways. First, the expected DFA to be learned is
available, e.g., the existing protocol in [23]. Second, random sam-
pling is used to generate traces to test the equivalence between a
candidate DFA and the expected DFA [50]. Last, a model checker
is applied to verify the equivalence between a candidate DFA with
the expected one based on some properties [16].

JavaScript malware detection. The existing studies on detec-
tion of malicious JS mainly adopt static analysis, or dynamic anal-
ysis, or hybrid analysis to identify the characteristics of malicious
JS. JSAND [26] extracted features from 4 aspects (redirection, de-
obfuscation, environmental context and exploitation) via dynamic
analysis, and used Naïve Bayes to detect JS malware. Canali et
al. [20] proposed to perform a large-scale static analysis to iden-
tify the malicious web pages by applying a fast and reliable fil-
ter PROPHILER. Curtsinger et al. [27] presented ZOZZLE, a tool
that predicates the benignity or maliciousness of JS code by us-
ing features associated with abstract syntax tree (AST) hierarchy
information. REVOLVER [34] also heavily relies on static analy-
sis to build the ASTs and to compute the similarity among ASTs.
CUJO [42] uses hybrid analysis to on-the-fly extract dynamic and
static features from program information and execution traces of JS
programs, respectively. All extracted features are processed by q-
grams for SVM based classification. These studies focus on detec-
tion of general JS malware. Other existing studies rely on dynamic
analysis to detect specific attacks [22][29][38][41][47]. Compared
with these tools, JS∗ can model attack behaviours. It does not re-
quire a large-size training set and can be generally applicable to
attacks with explicit browser-level system calls (actions).

8. CONCLUSIONS
In this work, we propose an approach, JS∗, for detecting ma-

licious JS via attack behavior modelling. JS∗ is based on the L∗

algorithm and the learned model is in the form of DFA. Our key
contribution is to combine data dependency analysis, defense rules
and replay mechanism to implement an online teacher for detection
and classification of malicious JS. We evaluate JS∗ using eight pop-
ular types of attacks. The experimental results demonstrate scala-
bility and effectiveness of our approach as well as the usefulness of
the inferred DFAs (or partial DFAs). For the future works, we are
planning to extend our approach to general attacks in OS level.

9. ACKNOWLEDGEMENTS
This research is supported by the National Research Foundation,

Prime Minister’s Office, Singapore, under its National Cybersecu-
rity R&D Program (Award No. NRF2014NCR-NCR001-30) and
administered by the National Cybersecurity R&D Directorate.

57

10. REFERENCES
[1] Alexa Top Sites. http://www.alexa.com/topsites.
[2] OpenMalware.

http://http://oc.gtisc.gatech.edu:8080/.
[3] VXHeaven. http://vxheavens.com/.
[4] Marketscope for AJAX technology and RIA platforms.

https://www.gartner.com/doc/847312/, 2008.
[5] The vulnerability of CoolPreviews.

http://www.security-assessment.com/
files/advisories/CoolPreviews_Firefox_
Extension_Security_Advisory.pdf, 2008.

[6] Mozilla Configurable Security Policies.
http://www-archive.mozilla.org/projects/
security/components/ConfigPolicy.html,
2009.

[7] JSand on-line service.
https://wepawet.iseclab.org/index.php,
2012.

[8] Kaspersky security bulletin 2013. http://media.
kaspersky.com/pdf/KSB_2013_EN.pdf, 2013.

[9] JS*: Malicious JavaScript Detection via Attack Behavior
Modelling. http://pat.sce.ntu.edu.sg/jsstar,
2014.

[10] MDN: Mozilla technologies: XPCOM.
https://developer.mozilla.org/en-US/
docs/Mozilla/Tech/XPCOM, 2014.

[11] VirusTotal: an on-line malware detection service .
https://www.virustotal.com/, 2014.

[12] Web Inspector. http://www.webinspector.com/,
2014.

[13] Microsoft Security Intelligence Report,Volume 15.
http://www.microsoft.com/security/sir/
archive/default.aspx, Jan. 2013 to Jun. 2013.

[14] Clamav. http://www.clamav.net/, Jan, 2015.
[15] 2014 best antivirus software review.

http://anti-virus-software-review.
toptenreviews.com/, Sep, 2014.

[16] R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of
interface specifications for java classes. In POPL, pages
98–109, 2005.

[17] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75(2):87–106, 1987.

[18] H. A. Basit and S. Jarzabek. A data mining approach for
detecting higher-level clones in software. IEEE Trans.
Software Eng., 35(4):497–514, 2009.

[19] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and
E. Kirda. Scalable, behavior-based malware clustering. In
NDSS, 2009.

[20] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a
fast filter for the large-scale detection of malicious web
pages. In WWW, pages 197–206, 2011.

[21] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel,
M. Christodorescu, and E. Kirda. A quantitative study of
accuracy in system call-based malware detection. In ISSTA,
pages 122–132, 2012.

[22] Y. Cao, V. Yegneswaran, P. A. Porras, and Y. Chen.
Pathcutter: Severing the self-propagation path of xss
javascript worms in social web networks. In NDSS, 2012.

[23] C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E. X. Wu,
and D. Song. Mace: Model-inference-assisted concolic
exploration for protocol and vulnerability discovery. In

USENIX Security Symposium, 2011.
[24] C. Y. Cho, D. Babic, E. C. R. Shin, and D. Song. Inference

and analysis of formal models of botnet command and
control protocols. In ACM Conference on Computer and
Communications Security, pages 426–439, 2010.

[25] M. Christodorescu, S. Jha, and C. Kruegel. Mining
specifications of malicious behavior. In ESEC/SIGSOFT
FSE, pages 5–14, 2007.

[26] M. Cova, C. Krügel, and G. Vigna. Detection and analysis of
drive-by-download attacks and malicious javascript code. In
WWW, pages 281–290, 2010.

[27] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert. Zozzle:
Fast and precise in-browser javascript malware detection. In
USENIX Security Symposium, 2011.

[28] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on
automated dynamic malware-analysis techniques and tools.
ACM Comput. Surv., 44(2):6, 2012.

[29] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending
browsers against drive-by downloads: Mitigating
heap-spraying code injection attacks. In DIMVA, pages
88–106, 2009.

[30] D. Gusfield. Algorithms on Strings, Trees, and Sequences -
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[31] O. Hallaraker and G. Vigna. Detecting malicious javascript
code in mozilla. In ICECCS, pages 85–94, 2005.

[32] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[33] M. Johns and J. Winter. Protecting the intranet against
javascript malware and related attacks. In DIMVA, pages
40–59, 2007.

[34] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and
G. Vigna. Revolver: An automated approach to the detection
of evasiveweb-based malware. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, pages 637–652,
Berkeley, CA, USA, 2013. USENIX Association.

[35] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-Y.
Zhou, and X. Wang. Effective and efficient malware
detection at the end host. In USENIX Security Symposium,
pages 351–366, 2009.

[36] A. P. Kosoresow and S. A. Hofmeyr. Intrusion detection via
system call traces. IEEE Software, 14(5):35–42, 1997.

[37] T. Lavoie and E. Merlo. An accurate estimation of the
levenshtein distance using metric trees and manhattan
distance. In IWSC, pages 1–7, 2012.

[38] V. B. Livshits and W. Cui. Spectator: Detection and
containment of javascript worms. In USENIX Annual
Technical Conference, pages 335–348, 2008.

[39] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C.
Mitchell. A layered architecture for detecting malicious
behaviors. In RAID, pages 78–97, 2008.

[40] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N.
Nguyen. Mining interprocedural, data-oriented usage
patterns in javascript web applications. In 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, pages 791–802, 2014.

[41] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn. Nozzle:
A defense against heap-spraying code injection attacks. In
USENIX Security Symposium, pages 169–186, 2009.

[42] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient

58

http://www.alexa.com/topsites
http://http://oc.gtisc.gatech.edu:8080/
http://vxheavens.com/
https://www.gartner.com/doc/847312/
http://www.security-assessment.com/files/advisories/CoolPreviews_Firefox_Extension_Security_Advisory.pdf
http://www.security-assessment.com/files/advisories/CoolPreviews_Firefox_Extension_Security_Advisory.pdf
http://www.security-assessment.com/files/advisories/CoolPreviews_Firefox_Extension_Security_Advisory.pdf
http://www-archive.mozilla.org/projects/security/components/ConfigPolicy.html
http://www-archive.mozilla.org/projects/security/components/ConfigPolicy.html
https://wepawet.iseclab.org/index.php
http://media.kaspersky.com/pdf/KSB_2013_EN.pdf
http://media.kaspersky.com/pdf/KSB_2013_EN.pdf
http://pat.sce.ntu.edu.sg/jsstar
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM
https://www.virustotal.com/
http://www.webinspector.com/
http://www.microsoft.com/security/sir/archive/default.aspx
http://www.microsoft.com/security/sir/archive/default.aspx
http://www.clamav.net/
http://anti-virus-software-review.toptenreviews.com/
http://anti-virus-software-review.toptenreviews.com/

detection and prevention of drive-by-download attacks. In
ACSAC, pages 31–39, 2010.

[43] I. Sato, Y. Okazaki, and S. Goto. An improved intrusion
detecting method based on process profiling. IPSJ Journal,
43(11):3316–3326, 2002.

[44] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. In IEEE Symposium on Security and Privacy,
pages 144–155, 2001.

[45] S. Stamm, B. Sterne, and G. Markham. Reining in the web
with content security policy. In WWW, pages 921–930, 2010.

[46] E. Stinson and J. C. Mitchell. Characterizing bots’ remote
control behavior. In DIMVA, pages 89–108, 2007.

[47] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P.
Markatos. Combining static and dynamic analysis for the
detection of malicious documents. In EUROSEC, page 4,
2011.

[48] J. Wang, Y. Xue, Y. Liu, and T. H. Tan. JSDC: A hybrid
approach for javascript malware detection and classification.
In Proceedings of the 10th ACM Symposium on Information,

Computer and Communications Security, ASIA CCS ’15,
Singapore, April 14-17, 2015, pages 109–120, 2015.

[49] Y.-M. Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski.
Detecting stealth software with strider ghostbuster. In DSN,
pages 368–377, 2005.

[50] H. Xiao, J. Sun, Y. Liu, S.-W. Lin, and C. Sun. Tzuyu:
Learning stateful typestates. In ASE, pages 432–442, 2013.

[51] Z. Xing. Model comparison with genericdiff. In ASE 2010,
25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24,
2010, pages 135–138, 2010.

[52] W. Xu, F. Zhang, and S. Zhu. The power of obfuscation
techniques in malicious javascript code: A measurement
study. In Malicious and Unwanted Software (MALWARE),
2012 7th International Conference on, pages 9–16. IEEE,
2012.

[53] P. Zeng, J. Sun, and H. Chen. Insecure javascript detection
and analysis with browser-enforced embedded rules. In
PDCAT, pages 393–398, 2010.

59

	Detection and classification of malicious JavaScript via attack behavior modelling
	Citation
	Author

	Introduction
	JS Attack Behavior Modelling
	Approach Overview
	Trace Preprocessing
	JS* Learning Framework
	Membership Query
	Browser Defense Rule
	Data Dependency Analysis
	Trace Replay
	Membership Query Algorithm

	Candidate Query
	The Learned DFA and Refinement

	Implementation and Evaluation
	Implementation
	Data Preparation and Setup
	JS* Learning Evaluation
	Discussion
	Threats to Validity

	Related Work
	Conclusions
	Acknowledgements
	References

