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Abstract—In recent years, coverage-based greybox fuzzing has
proven itself to be one of the most effective techniques for finding
security bugs in practice. Particularly, American Fuzzy Lop (AFL
for short) is deemed to be a great success in fuzzing relatively sim-
ple test inputs. Unfortunately, when it meets structured test inputs
such as XML and JavaScript, those grammar-blind trimming and
mutation strategies in AFL hinder the effectiveness and efficiency.

To this end, we propose a grammar-aware coverage-based grey-
box fuzzing approach to fuzz programs that process structured in-
puts. Given the grammar (which is often publicly available) of test
inputs, we introduce a grammar-aware trimming strategy to trim
test inputs at the tree level using the abstract syntax trees (ASTs)
of parsed test inputs. Further, we introduce two grammar-aware
mutation strategies (i.e., enhanced dictionary-based mutation and
tree-based mutation). Specifically, tree-based mutation works via
replacing subtrees using the ASTs of parsed test inputs. Equipped
with grammar-awareness, our approach can carry the fuzzing ex-
ploration into width and depth.

We implemented our approach as an extension to AFL, named
Superion; and evaluated the effectiveness of Superion using large-
scale programs (i.e., an XML engine libplist and three JavaScript
engines WebKit, Jerryscript and ChakraCore). Our results have
demonstrated that Superion can improve the code coverage (i.e.,
16.7% and 8.8% in line and function coverage) and bug-finding
capability (i.e., 34 new bugs, among which we discovered 22 new
vulnerabilities with 19 CVEs assigned and 3.2K USD bug bounty
rewards received) over AFL and jsfunfuzz.

Index Terms—Greybox Fuzzing, Structured Inputs, ASTs

I. INTRODUCTION

Fuzzing or fuzz testing is an automated software testing tech-

nique to feed a large amount of invalid or unexpected test inputs

to a target program in the hope of triggering unintended pro-

gram behaviors, e.g., assertion failures, crashes, or hangs. Since

its introduction in the early 1990s [46], fuzzing has become one

of the most effective techniques to find vulnerabilities in real-

world programs for ensuring software security [45]. It has been

applied to testing various applications, ranging from rendering

engines and image processors to compilers and interpreters.

A fuzzer can be classified as generation-based (e.g., [32, 62,

64, 69]) or mutation-based (e.g., [9, 43, 55, 59]), depending on

whether test inputs are generated by the knowledge of the input

format or grammar or by modifying well-formed test inputs. A

fuzzer can also be classified as whitebox (e.g., [25, 53]), grey-

box (e.g., [9, 43]) or blackbox (e.g., [46, 66]), depending on the

degree of leveraging a target program’s internal structure, which

reflects the tradeoffs between effectiveness and efficiency. In

this paper, we focus on mutation-based greybox fuzzing.

Coverage-Based Greybox Fuzzing. One of the most suc-

cessful mutation-based greybox fuzzing techniques is coverage-
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Fig. 1: The General Workflow of AFL

based greybox fuzzing, which uses the coverage information of

each executed test input to determine the test inputs that should

be retained for further incremental fuzzing. AFL [71] is a state-

of-the-art coverage-based greybox fuzzer, which has discovered

thousands of high-profile vulnerabilities. Thus, without the loss

of generality, we consider AFL as the typical implementation of

coverage-based greybox fuzzing.

As shown in Fig. 1, AFL takes the target program as an input,

and works in two steps: instrumenting the target program and

fuzzing the instrumented program. The instrumentation step in-

jects code at branch points to capture branch (edge) coverage

together with branch hit counts (which are bucketized to small

powers of two). A test input is said to have new coverage if it

either hits a new branch, or achieves a new hit count for an

already-exercised branch. The fuzzing step can be broken down

into five sub-steps. Specifically, a test input is first selected from

a queue where the initial test inputs as well as the test inputs that

have new coverage are stored. Then the test input is trimmed to

the smallest size that does not change the measured behavior of

the program, as the size of test inputs has a dramatic impact on

the fuzzing efficiency. The trimmed test input is then mutated to

generate new test inputs and the program is executed with

respect to each mutated test input. Finally, the queue is updated

by adding those mutated test inputs to the queue if they achieve

new coverage, while the mutated test inputs that achieve no new

coverage are discarded. This fuzzing loop continues by selecting

a new test input from the queue.

Challenges. The current coverage-based greybox fuzzers can

effectively fuzz programs that process compact and unstructured

inputs (e.g., images). However, some challenges arise when they

are used to target programs that process structured inputs (e.g.,

XML and JavaScript) that often follow specific grammars. Such

programs often process the inputs in stages, i.e., syntax parsing,

semantic checking, and application execution [64].

On one hand, the trimming strategies (e.g., removal of chunks

of data) in AFL are grammar-blind, and hence can easily violate

the grammar or destroy the input structure. As a result, most test

inputs in the queue cannot be effectively trimmed to keep them

syntax-valid. This is especially the case when the target program
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Fig. 2: The General Workflow of Superion with the Highlighted

Differences from AFL (see Fig. 1)

can process a part of a test input (triggering coverage) but errors

out on the remaining part. This will greatly affect the efficiency

of AFL because it needs to spend more time on fuzzing the test

inputs whose structures are destroyed, but only finds parsing

errors and gets stuck at the syntax parsing stage, which heavily

limits the capability of fuzzers in finding deep bugs.

On the other hand, the mutation strategies (e.g., bit flipping)

in AFL are grammar-blind, and hence most of the mutated test

inputs fail to pass syntax parsing and are rejected at an early

stage of processing. As a result, it is difficult for AFL to achieve

grammar-aware mutations. Besides, AFL spends a large amount

of time struggling with syntax correctness, while only finding

parsing errors. Thus, the effectiveness of AFL to find deep bugs

is heavily limited for programs that process structured inputs.

The Proposed Approach. To address the challenges, we pro-

pose a new grammar-aware coverage-based greybox fuzzing ap-

proach for programs that process structured inputs. We also im-

plement the proposed approach as an extension to AFL, named

Superion1. Our approach takes as inputs a target program and a

grammar of the test inputs that is often publicly available. Based

on the grammar, we parse each test input into an abstract syntax

tree (AST). Using ASTs, we introduce a grammar-aware trim-

ming strategy that can effectively trim test inputs while keeping

the input structure valid. This is realized by iteratively removing

each subtree in the AST of a test input and observing coverage

differences. Moreover, we propose two grammar-aware muta-

tion strategies that can quickly carry the fuzzing exploration be-

yond syntax parsing. We first enhance AFL’s dictionary-based

mutation strategy by inserting/overwriting tokens in a grammar-

aware manner, and then propose a tree-based mutation strategy

that replaces one subtree in the AST of a test input with the

subtree from itself or another test input in the queue.

To evaluate the effectiveness of Superion, we conducted ex-

periments on one XML engine libplist and three JavaScript en-

gines WebKit, Jerryscript and ChakraCore. We compared our

approach with AFL with respect to the code coverage and bug-

finding capability. The results have demonstrated that Superion

can effectively improve the code coverage over AFL by 16.7%

in line coverage and 8.8% in function coverage; and Superion

can significantly improve the bug-finding capability over AFL

by finding 34 new bugs (among which six were found by AFL).

Among these bugs, 22 new vulnerabilities were discovered with

19 CVEs assigned; and we received 3.2K USD bug bounty

1Superion is an Autobot combiner in the cartoon The Transformers.

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Some ASCII string</key>
<string></string>
<data>
</data>

</dict>
</plist>

Fig. 3: An Example of AFL’s Built-In Trimming

rewards. Besides, we compared Superion with jsfunfuzz [57],

which is a successful fuzzer specifically designed for JavaScript.

However, it failed to find any new bugs. Moreover, we have

demonstrated that our grammar-aware trimming strategy can

effectively trim test inputs while keeping them syntax-valid; and

our grammar-aware mutation strategies can effectively generate

new test inputs that can trigger new coverage.

Contributions. The contributions of this work are:

• We proposed a novel grammar-aware coverage-based greybox

fuzzing approach for programs that process structured inputs,

which complements existing coverage-based greybox fuzzers.

• We implemented our approach and made it open-source2, and

conducted experiments to demonstrate its effectiveness.

• We found 34 new bugs, among which we found 22 new vul-

nerabilities with 19 CVEs assigned and received 3.2K USD

bug bounty rewards.

II. OUR APPROACH

To address the challenges of coverage-based greybox fuzzing

(Section I), we propose a novel grammar-aware coverage-based

greybox fuzzing approach, which targets programs that process

structured inputs. We implement the approach as an extension to

AFL [71], named Superion. Fig. 2 introduces the workflow of

Superion, and highlights the differences from AFL (see Fig. 1).

In particular, a context-free grammar of the test inputs is needed,

which is often publicly available (e.g., in ANTLR’s community

[1]). We introduce a grammar-aware trimming strategy (Section

II-A) and two grammar-aware mutation strategies (Section II-B)

with the purpose of making AFL grammar-aware.

A. Grammar-Aware Trimming Strategy

The built-in trimming strategy in AFL is grammar-blind, and

treats a test input as chunks of data. Basically, it first divides the

test input to be trimmed into chunks of len/n bytes where

len is the length of the test inputs in bytes, and then tries to

remove each chunk sequentially. If the coverage remains the

same after the removal of a chunk, this chunk is trimmed. Note

that n starts at 16 and increments by a power of two up to 1024.

This strategy is very effective for unstructured inputs. However,

it cannot effectively prune structured inputs while keeping them

syntax-valid, possibly making AFL stuck in the fuzzing explo-

ration of syntax parsing without finding deep bugs.

Example. Fig. 3 gives an example of AFL’s built-in trimming

on an XML test input with respect to libplist (an XML engine),

where “l versio” and “dict> </plis” are trimmed (highlighted

by strikethrough). The trimmed test input is syntax-invalid, but

still has the same coverage as the original test input because the

2https://github.com/zhunki/Superion
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Algorithm 1 Grammar-Aware Trimming

Input: the test input to be trimmed in, the grammar G
Output: the trimmed test input ret

1: while true do
2: parse in according to G into an AST tree
3: if there are any parsing errors then
4: return built-in-trimming (in)
5: end if
6: for each subtree n in tree do
7: ret = remove n from tree
8: run the target program against ret
9: if coverage remains the same then

10: in = ret
11: break
12: else
13: add n back to tree
14: end if
15: if n is the last subtree in tree then
16: return ret
17: end if
18: end for
19: end while

...
try{eval("M:if(([15,16,17,18].some(this.unwatch(\"x\"),(([window if([[]])])[this.

prototype])))) else{true;return null;}");} catch(ex){}
try{eval("M:while((null >=\"\")&&0){/a/gi}");} catch(ex){}
try{eval("\nbreak M;\n");} catch(ex){}
try{eval("L:if((window[(1.2e3.x::y)]).x) return null; else if((uneval(window))++.

propertyIsEnumerable(\"x\")){CollectGarbage()}");} catch(ex){}
try{eval("/*for..in*/for(var x in ((({}).hasOwnProperty

)([,,].hasOwnProperty(\"x\"))))/*for..in*/ M:for(var
[window, y] =(-1) in this) [1,2,3,4].slice");} catch
(ex){}

try{eval("if(\"\"){}else if(x4) {null;}");} catch(ex){}
try{eval("{}");} catch(ex){}
try{eval("for(var x = x in x - /x/ ){}");} catch(ex){}
try{eval("if((uneval(x, x))) var x = false; else if((null\n.unwatch(\"x\"))) throw

window; else {} return 3;");}catch(ex){}
...

Fig. 4: An Example of Grammar-Aware Trimming

implementation of libplist does not adhere to XML’s grammar

specification. Hence, the trimmed test input is used for further

fuzzing even though its grammar is destroyed.

To ensure the syntax-validity of trimmed test inputs, we pro-

pose a grammar-aware trimming strategy, whose procedure is

given in Algorithm 1. It first parses the test input to be trimmed

in according to the grammar G into an AST tree (Line 2). If

any parsing errors occur (as in’s structure may be destroyed by

mutations), then it uses AFL’s built-in trimming strategy rather

than directly discarding it (Line 3–5); otherwise, it attempts to

trim a subtree n from tree (Line 6–7). If the coverage is differ-

ent after n is trimmed, then n cannot be trimmed (Line 12–14),

and it tries to trim next subtree; otherwise, n is trimmed, and it

re-parses the remaining test input (Line 9–11), and then repeats

the procedure until no subtree can be trimmed (Line 15–16).

Thus, we resort to AFL’s built-in trimming only when our tree-

based trimming is not applicable. This is because sometimes

invalidity is also useful.

Example. Fig. 4 shows an example of our trimming strategy

on a JavaScript test input, where a complete try-catch state-

ment (highlighted by strikethrough) is trimmed without raising

any coverage difference. It is almost impossible for AFL’s built-

in trimming strategy to prune such a complete statement.

B. Grammar-Aware Mutation Strategies

The default mutation strategies (e.g., bit flipping or token in-

sertion) in AFL are too fine-grained and grammar-blind to keep

the input structure following the underlying grammar. Therefore,

Algorithm 2 Dictionary-Based Mutation

Input: the test input in, the dictionary D
Output: the set of mutated test inputs T

1: T = ∅
2: l = the length of in
3: for i = 0; i < l; do
4: j = i + 1
5: curr = *(u8*)(in’s address + i) // current byte of in
6: next = *(u8*)(in’s address + j) // next byte of in
7: while j < l && curr and next are alphabet or digit do
8: j = j + 1
9: next = *(u8*)(in’s address + j)

10: end while
11: for each token d in D do
12: insert d at i of in / overwrite i to j of in with d
13: T = T ∪ {in}
14: end for
15: i = j
16: end for

overwrite

insert

…
a = 0x1;
a = 01;
…

…
a = 0x1;
a = 01;
…

…
a = 0x1;
a = 0+;
…

…
a = 0x1;
a = 0const1;
…

(a) Original

…
a = 0x1;
a = 01;
…

…
a = 0x1;
a = 01;
…

…
a = 0x1;
a + 01;
…

…
a = 0x1;
const a = 01;
…

overwrite

insert

(b) Enhanced

Fig. 5: An Example of Dictionary-Based Mutation

we propose two grammar-aware mutation strategies to improve

the mutation effectiveness on triggering new program behaviors.

1) Enhanced Dictionary-Based Mutation: Dictionary-based

mutation [70] was introduced to make up for the grammar-blind

nature of AFL. The dictionary is actually a list of basic syntax

tokens (e.g., reserved keywords) which can be provided by users

or automatically identified by AFL. Every token is inserted be-

tween every two bytes of the test input to be mutated, or written

over every byte sequence of the same length of the token. Such

mutations can produce syntax-valid test inputs but are inefficient

as most of the generated inputs have destroyed structures.

Therefore, we propose the enhanced dictionary-based muta-

tion as shown in Algorithm 2. This algorithm leverages the key

fact that the tokens (e.g., variable names, function names, or re-

served keywords) in a structured test input normally only con-

sist of alphabets or digits. Hence, it first locates the token bound-

aries in a test input by iteratively checking whether the current

and next byte are both alphabet or digit (Line 3–10). Then it

inserts each token in the dictionary to each located boundary,

which avoids the insertion between the consecutive sequence of

alphabets and digits and thus greatly decreases the number of

token insertions (Line 11–14). Similarly, it writes each token

in the dictionary over the content between every two located

boundaries, which also greatly decreases the number of token

overwrites. Such token insertions and overwrites not only

maintains the structure of mutated test inputs but also decreases

the number of mutated test inputs, hence greatly improving the

effectiveness and efficiency of dictionary-based mutation.

Example. Fig. 5 illustrates the difference between the origi-

nal and enhanced dictionary-based mutation. In the original one,

01 is not treated as a whole, and thus 1 can be overwritten by

+ and const can be inserted between 0 and 1, which destroys

the structure without introducing any new coverage. In the en-
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Algorithm 3 Tree-Based Mutation

Input: the test input tar, the grammar G, the test input pro
Output: the set of mutated test inputs T

1: T = ∅
2: S = ∅ // the set of subtrees in tar and pro
3: parse tar according to G into an AST tar tree // Heuristic 1
4: if there are any parsing errors then
5: return
6: end if
7: for each subtree n in tar tree do // Heuristic 3
8: S = S ∪ {n}
9: end for

10: parse pro according to G into an AST pro tree // Heuristic 1
11: if there is no parsing error then
12: for each subtree n in pro tree do // Heuristic 3
13: S = S ∪ {n}
14: end for
15: end if
16: for each subtree n in tar tree do // Heuristic 2
17: for each subtree s in S do
18: ret = replace n in tar tree’s copy with s
19: T = T ∪ {ret}
20: end for
21: end for
22: return T

hanced one, 01 is identified as a whole, and hence the mutated

test inputs in Fig. 5a will not be produced. Instead, it can gen-

erate the mutated test inputs in Fig. 5b more efficiently, which

are taken from our experiments and both lead to new coverage.

2) Tree-Based Mutation: Dictionary-based mutation is aware

of the underlying grammar in an implicit way. To be explicitly

aware of the grammar and thus producing syntax-valid test in-

puts, we utilize the grammar knowledge and design a tree-based

mutation, which works at the level of ASTs. Different from the

tokens used in dictionary-based mutation, AST actually models

a test input as objects with named properties and is designed to

represent all the information about a test input. Thus, ASTs pro-

vide a suitable granularity for a fuzzer to mutate test inputs.

Algorithm 3 shows the procedure of our tree-based mutation.

It takes as inputs a test input tar to be mutated, the grammar G,

and a test input pro that is randomly chosen from the queue. It

first parses tar according to G into an AST tar tree; and if

any parsing errors occur, tar is a syntax-invalid test input and

we do not apply tree-based mutation to tar (Line 3–6). If no

error occurs, it traverses tar tree, and stores each subtree in a

set S (Line 7–9). Then it parses pro into an AST pro tree, and

stores each subtree of pro tree in S if there is no parsing error

(Line 10–15). Here S serves as the content provider of mutation.

Then, for each subtree n in tar tree, it replaces n with each of

the subtree s in S to generate a new mutated test input (Line 16–

21). Finally, it returns the set of mutated test inputs. Notice

that we do not consider the node type when replacing subtrees

because that will harm the general applicability of Superion.

The size of this returned set can be the multiplication of the

number of subtrees in tar tree and the number of subtrees in

tar tree and pro tree, which could be very large. As an exam-

ple, our tree-based mutation on tar and pro whose number of

subtrees is respectively 100 and 500 will generate 100× (100+
500) = 60, 000 test inputs. This will add burden to the program

execution step during fuzzing, making fuzzing less efficient. To

relieve the burden, we design three heuristics to reduce the num-

ber of mutated test inputs. For clarity, we do not elaborate these

heuristics in Algorithm 3, but only show where they are applied.

TABLE I: Target Languages and Their Structure and Samples

Language # Symbols Structure Level # Samples

XML 8 Weak 9,467 (534)

JavaScript 98 Strong 20,845 (2,569)

• Heuristic 1: Restricting the size of test inputs. We limit the

size of test inputs (i.e., tar and pro in Algorithm 3) as 10,000

bytes long (Line 3 and 10). Hence we do not apply tree-based

mutation to tar if tar is more than 10,000 bytes long; and we

do not use subtrees of pro as the content provider of mutation

if pro is more than 10,000 bytes long. The reasons are that, a

larger test input usually needs a larger number of mutations;

more memory is required to store the AST of a larger test in-

put; and a larger test input often has a slower execution speed.

• Heuristic 2: Restricting the number of mutations. If there

are more than 10,000 subtrees in tar and pro, we randomly

select 10,000 from all subtrees in S as the content provider of

mutation (Line 16). Thus, we keep the number of mutations

on each test input in the queue under 10,000 to make sure that

each test input in the queue has the chance to get mutated.

• Heuristic 3: Restricting the size of subtrees. We limit the

size of subtrees (i.e., each subtree in S in Algorithm 3) as 200

bytes long (Line 7 and 12). Thus we do not use the subtrees of

tar and pro as the content provider of mutation if the subtree

is more than 200 bytes long. Notice that 200 bytes are long

enough to include complex statements.

The threshold values in these heuristics were empirically

established as good ones.

Example. Fig. 6 shows an example of our tree-based muta-

tion. The left-side is the AST of the test input to be mutated (i.e.,

tar in Algorithm 3), and the right-side is the AST of the test in-

put that provides the content of mutation (i.e., pro in Algorithm

3). Here the subtree corresponding to the expression x+2 in tar
is replaced with the subtree corresponding to the expression

Number(x) in pro, resulting in a new test input.

III. EVALUATION

We implemented Superion in 3,372 lines of C/C++ code by

extending AFL [71]. Particularly, given the grammar of test in-

puts, we adopted ANTLR 4 [50] to generate the lexer and parser,

and used ANTLR 4 C++ runtime to parse test inputs and realize

our trimming and mutation strategies. Hence, our approach is

general and easily adoptable for other structured test inputs.

A. Evaluation Setup

To evaluate the effectiveness and generality of our approach,

we selected two target languages and four target programs, and

compared our approach with AFL [71] with respect to the bug-

finding capability and code coverage.

Target Languages. We chose XML and JavaScript as the tar-

get languages with different structure level. Their grammars are

all publicly available in ANTLR’s community [1]. In particular,

XML is a widely-used markup language. As shown in the sec-

ond column of Table I, the XML grammar only contains eight

symbols. Thus, XML can be considered to be weakly-structured.

JavaScript is an interpreted language, and its grammar contains

98 symbols. Thus, its structure level can be regarded as strong.
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Fig. 6: An Example of Tree-Based Mutation

TABLE II: Target Programs and Their Fuzzing Configuration

Program Version # Lines # Func. Coverage Timespan

libplist 1.12 3,317 316 Edge 3 months

WebKit 602.3.12 151,807 60,340 Block 3 months

Jerryscript 1.0 19,963 1,100 Edge 3 months

ChakraCore 1.10.1 236,881 74,132 Block 3 months

As indicated by the last column of Table I, we crawled 9,467

XML samples from the Internet, and 20,845 JavaScript samples

from the test inputs of the two open-source JavaScript engines

WebKit and Jerryscript. They were used as the initial test inputs

(i.e., seeds) for fuzzing. As suggested by AFL, afl-cmin should

be used to identify the set of functionally distinct seeds that

exercise different code paths in the target program when a large

number of seeds are available. Therefore, we used afl-cmin on

the samples, and identified 534 and 2,569 distinct XML and

JavaScript samples as the seeds for fuzzing, as shown in the

parentheses in the last column of Table I. Notice that, before

fuzzing, we pre-processed the JavaScript samples by removing

all the comments because comments account for a considerable

percentage of waste of mutation.

Target Programs. We selected one open-source XML en-

gine libplist and three open-source JavaScript engines WebKit,

Jerryscript and ChakraCore as the programs for fuzzing. The

first four columns of Table II list the program details, including

the version, the number of lines of code, and the number of func-

tions. Particularly, libplist is a small portable C library to handle

Apple Property List format files in binary or XML. It is widely

used on iOS and Mac OS. WebKit is a cross-platform web

browser engine. It powers Safari, iBooks and App Store, and

various Mac OS, iOS and Linux applications. Jerryscript is a

lightweight JavaScript engine for Internet of Things, intended to

run on a very constrained device. ChakraCore is the core part

of the Chakra JavaScript engine that powers Microsoft Edge.

We chose these programs because they are security-critical and

widely-fuzzed. Thus, finding bugs in them are significant.

As shown in the fifth column of Table II, we used edge cover-

age for libplist and Jerryscript during fuzzing, but block cover-

age for others due to non-determinism (i.e., different executions

of a test input lead to different coverage). Besides, we excluded

the non-deterministic code in WebKit and ChakraCore from

instrumentation, following the technique in kAFL [58].

At the time of writing, we have fuzzed these programs for

about three months. For libplist and Jerryscript, we have com-

pleted more than 100 cycles of fuzzing. For WebKit and Chakra-

Core, due to their large size, we have not finished one cycle

yet. Here a cycle means the fuzzer went over all the interesting

test inputs (triggering new coverage) discovered so far, fuzzed

them, and looped back to the very beginning.

Research Questions. Using the previous evaluation setup,

we aim to answer the following five research questions.

• RQ1: How is the bug-finding capability of Superion?

• RQ2: How is the code coverage of Superion?

• RQ3: How effective is our grammar-aware trimming?

• RQ4: How effective is our grammar-aware mutation?

• RQ5: What is the performance overhead of Superion?

We conducted all the experiments on machines with 28 Intel

Xeon CPU E5-2697v3 cores and 64GB memory, running 64-bit

Ubuntu 16.04 as the operating system.

B. Discovered Bugs and Vulnerabilities (RQ1)

Table III lists the unique bugs found by Superion. In libplist,

we discovered 11 new bugs, from which we found 10 new vul-

nerabilities with CVE identifiers assigned. In WebKit, 16 new

bugs were found. Seven of them were vulnerabilities with five

CVE identifiers assigned, and others are pending for advisories.

It is worth mentioning that these bugs obtained high appraisals,

e.g.,“Thank you for the awesome test case” and “This bug has
existed for a long time. A quick look through blame would say
for 4-5 years or so”. In Jerryscript, we found four previously

unknown bugs, from which we found four vulnerabilities with

three CVE identifiers assigned. In ChakraCore, we discovered

three new bugs, and one of them was a vulnerability. Note that

we received 3.2K USD bug bounty rewards.

With respect to the type of these bugs (see the third column of

Table III), 12 of them are buffer overflow, 2 of them are integer

overflow, 4 of them are memory corruption, 2 of them are arbi-

trary address access, 1 of them is uninitialized memory read and
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TABLE III: Unique Bugs Discovered by Superion

Program Bug Type AFL jsfunfuzz

libplist

CVE-2017-5545 Buffer Overflow � N/A

CVE-2017-5834 Buffer Overflow � N/A

CVE-2017-5835 Memory Corruption � N/A

CVE-2017-6435 Memory Corruption � N/A

CVE-2017-6436 Memory Corruption � N/A

CVE-2017-6437 Buffer Overflow � N/A

CVE-2017-6438 Buffer Overflow � N/A

CVE-2017-6439 Buffer Overflow � N/A

CVE-2017-6440 Memory Corruption � N/A

Bug-90 Assertion Failure � N/A

CVE-2017-7440 Integer Overflow � N/A

WebKit

CVE-2017-7095 Arbitrary Access � �

CVE-2018-4378 Use-After-Free � �

CVE-2018-4392 Buffer Overflow � �

CVE-2017-7102 Arbitrary Access � �

CVE-2017-7107 Integer Overflow � �

Bug-191058 Assertion Failure � �

Bug-192464 Uninitialized Memory Read � �

Bug-185645 Null Pointer Deref � �

Bug-188917 Assertion Failure � �

Bug-170989 Assertion Failure � �

Bug-170990 Assertion Failure � �

Bug-172346 Null Pointer Deref � �

Bug-172957 Null Pointer Deref � �

Bug-172963 Buffer Overflow � �

Bug-173305 Assertion Failure � �

Bug-173819 Assertion Failure � �

Jerryscript

CVE-2017-18212 Buffer Overflow � N/A

CVE-2018-11418 Buffer Overflow � N/A

CVE-2018-11419 Buffer Overflow � N/A

Bug-2238 Buffer Overflow � N/A

ChakraCore

CVE-2019-0648 Buffer Overflow � �

Bug-5533 Null Pointer Deref � �

Bug-5532 Null Pointer Deref � �

1 of them is use-after-free. These are all vulnerabilities. Besides,

5 of them are null pointer dereference, and 7 of them are

assertion failure. These are all denial of service bugs. All these

34 bugs have been confirmed, and 25 of them have been fixed.

Comparison to AFL. Among these 34 bugs, AFL only dis-

covered six of them (as shown in the fourth column of Table III)

in three months and did not discover any other new bugs. This

indicates that Superion significantly improves the bug finding

capability of coverage-based grey-box fuzzers, which owes to

the grammar-awareness in Superion. Specifically, for relatively

weakly-structured inputs such as XML, AFL discovered 5 bugs,

while Superion not only found all these 5 bugs, but also found

6 more bugs than AFL. Differently, for highly-structured inputs

such as JavaScript, AFL barely found any bugs. Only one bug

about utf-8 encoding problem was found by AFL in Jerryscript.

All other bugs in JavaScript engines were found by Superion’s

tree-based mutation. This shows the significance of injecting

grammar-awareness into coverage-based grey-box fuzzers.

Comparison to jsfunfuzz. We also compared Superion with

jsfunfuzz [57], which is a successful grammar-aware fuzzer

specifically designed for testing JavaScript engines. jsfunfuzz

can be used to fuzz WebKit and ChakraCore; but it fails to fuzz

Jerryscript because its generated JavaScript inputs have many

JavaScript features that are not supported by Jerryscript. After

three months of fuzzing, jsfunfuzz only found hundreds of out-

TABLE IV: Code Coverage of the Target Programs

Program
Line Coverage (%) Function Coverage (%)

Seeds AFL Superion Seeds AFL Superion

libplist 33.3 50.8 68.9 27.5 32.6 40.8

WebKit 52.4 56.0 78.0 35.1 37.0 49.5

Jerryscript 81.3 84.0 88.2 76.0 77.1 78.2

ChakraCore 46.7 54.5 76.9 40.7 49.8 63.2

of-memory crashes in WebKit and ChakraCore, but failed to

find any bugs (as indicated by the last column of Table III). This

is because jsfunfuzz uses manually-specified rules to express

the grammar rules the generated inputs should satisfy. However,

it is daunting, or even impossible to manually express all the

required rules. Instead, Superion directly uses the grammar

automatically during trimming and mutation.

In summary, Superion can significantly improve the bug-

finding capability of coverage-based grey-box fuzzers (e.g.,

we found 34 new bugs, among which we discovered 22

new vulnerabilities with 19 CVE identifiers assigned).

C. Code Coverage (RQ2)

Apart from the bug-finding capability, we also measured the

code coverage of fuzzing. The results are shown in Table IV,

including the line and function coverage of the target programs.

In particular, we list the coverage achieved by initial seeds, AFL

and Superion. The coverage was calculated using afl-cov [54].

We were not able to calculate the coverage for jsfunfuzz due to

two reasons: jsfunfuzz does not keep the JavaScript samples

executed; and jsfunfuzz is very efficient and executes millions

of JavaScript samples until it triggers a crash, which makes

the coverage computation infeasible.

For line coverage, the initial seeds covered 33.3% lines of

libplist, 52.4% lines of WebKit, 81.3% lines of Jerryscript and

46.7% lines of ChakraCore. By fuzzing, AFL respectively in-

creased their line coverage to 50.8%, 56.0%, 84.0% and 54.5%.

On average, AFL further covered 7.9% of the code. Superion

improved the line coverage to 68.9%, 78.0%, 88.2% and 76.9%,

respectively; and it further covered 24.6% of the code on av-

erage. Overall, Superion outperformed AFL by 16.7% in line

coverage, because the grammar-awareness in Superion carries

the fuzzing exploration towards the application execution stage.

On the other hand, for function coverage, the initial seeds

covered 44.8% functions on average, and AFL and Superion in-

creased the function coverage to 49.1% and 57.9%, respectively.

Generally, Superion outperformed AFL by 8.8% in function

coverage due to its grammar-awareness.

In summary, Superion can significantly improve the code

coverage of coverage-based grey-box fuzzers (e.g., 16.7%

in line coverage and 8.8% in function coverage).

D. Effectiveness of Grammar-Aware Trimming (RQ3)

Table V compares the trimming ratio (i.e., the ratio of bytes

trimmed from test inputs) and the grammar validity ratio (i.e.,

the ratio of test inputs that are grammar-valid after trimming)

using the built-in trimming in AFL and the tree-based trimming

in Superion. Numerically, for libplist, the built-in trimming in

AFL trimmed out 21.7% of bytes in XML test inputs on average,
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TABLE V: Comparison Results of Trimming Strategies

Program
Trimming Ratio (%) Grammar Validity Ratio (%)

Built-In Tree-Based Built-In Tree-Based

libplist 21.7 11.7 74.1 100

WebKit 10.6 7.6 86.4 100

Jerryscript 5.1 4.7 89.3 100

ChakraCore 12.7 11.3 83.7 100

while our tree-based trimming trimmed out 11.7% on average.

On the other hand, 74.1% of test inputs after the built-in trim-

ming were grammar-valid, but 100% of test inputs after our tree-

based trimming were grammar-valid and can be further used

to conduct our grammar-aware mutation.

Similarly, the built-in trimming respectively trimmed out

10.6%, 5.1% and 12.7% of bytes in JavaScript test inputs for

WebKit, Jerryscript and ChakraCore, while our tree-based trim-

ming respectively trimmed out 7.6%, 4.7% and 11.3% for We-

bKit, Jerryscript and ChakraCore. On the other hand, our tree-

based trimming increased the grammar validity ratio for We-

bKit, Jerryscript and ChakraCore from 86.4%, 89.3% and 83.7%

to 100%, which can facilitate our grammar-aware mutation by

improving the chance of applying grammar-aware mutation

(which is more effective in generating test inputs that can

trigger new coverage as will be discussed in Section III-E).

In summary, although with a relatively low trimming ratio,

our grammar-aware trimming strategy can significantly im-

prove the grammar validity ratio for the test inputs after

trimming, which facilitates our grammar-aware mutation.

E. Effectiveness of Grammar-Aware Mutation (RQ4)

To evaluate the effectiveness of our grammar-aware mutation

strategies, we compared them with those built-in mutation strate-

gies of AFL [73], which include bit flips (flip1/flip2/flip4 – one/t-

wo/four bit(s) flips), byte flips (flip8/flip16/flip32 – one/two/four

byte(s) flips), arithmetics (arith8/arith16/arith32 – subtracting

or adding small integers to 8-/16-/32-bit values), value overwrite

(interest8/interest16/interest32 – setting “interesting” 8-/16-/32-

bit values to 8-/16-/32-bit values), havoc (random application of

bit flips, byte flips, arithmetics, and value overwrite), and splice
(splicing together two random test inputs from the queue, and

then applying havoc). For the ease of presentation, our enhanced

dictionary-based mutation strategy is referred to as ui (insertion

of user-supplied tokens), uo (overwrite with user-supplied

tokens), ai (insertion of automatically extracted tokens), and

ao (overwrite with automatically extracted tokens); and our

tree-based mutation strategy is referred to as tree.

Fig. 7 shows the number of interesting test inputs (i.e., trigger-

ing new coverage) discovered by different mutation strategies as

we fuzzed WebKit. Because of space limit, we omit the similar

results for the other three projects. The x-axis denotes the

number of test inputs that Superion sequentially took from the

queue and processed, and the y-axis denotes the corresponding

number of interesting test inputs produced by different mutation

strategies. As the process of different test inputs often takes dif-

ferent time, we do not use time to represent the x-axis. Besides,

for clarity, Fig. 7 omits the results when all the mutation strate-

gies become ineffective in continuously producing interesting

test inputs (i.e., when the curves in Fig. 7 change gently).

The results vary across different seeds. Even with seeds fixed,

the results may also vary across different runs due to the random

nature of some mutation strategies (i.e., havoc, splice and tree).

However, the trend remains the same across runs, and we only

discuss the trend which holds across runs. In the beginning, bit

and byte flips take a leading position in producing interesting

test inputs. The reasons are that i) bit and byte flips often

destroy the input structure, and trigger previously unseen error

handling paths; and ii) bit and byte flips are the first mutation

strategy to be sequentially applied, thus having the opportunity

to first trigger the new coverage that could also be triggered

by other mutation strategies. Gradually, the number of inter-

esting test inputs generated by our grammar-aware mutation

strategies outperform other mutation strategies. Specifically,

tree and uo significantly outperform other mutation strategies.

These results indicate that grammar-aware mutation strategies

are effective in producing interesting test inputs.

Besides, we also explore the efficiency of different mutation

strategies in producing interesting test inputs. The results are

shown in Fig. 8, where the x-axis is the same to Fig. 7 and the

y-axis denotes the ratio of interesting test inputs to the total

number of generated test inputs. Surprisingly, all the mutation

strategies are very inefficient in producing interesting test inputs,

i.e., only two of the 1000 mutated test inputs can trigger new

coverage. Thus, a huge amount of fuzzing efforts are wasted in

mutating and executed test inputs. Therefore, adaptive mutation

rather than exhaustive mutation should be designed to smartly

apply mutation strategies.

Moreover, to evaluate our enhancement to dictionary-based

mutation, we compared the dictionary overwrite and insertion in

AFL with those in Superion. The results are reported in Fig. 9,

where the x-axis is the same to Fig. 7, and the y-axis in Fig. 9a

and Fig. 9b represent the number of times each mutation is

applied and the number of interesting test inputs generated. We

can see that our enhanced dictionary-based mutation greatly

decreases the number of mutation applications by half, while

still generating significantly more interesting test inputs.

In summary, our grammar-aware mutation strategies are ef-

fective in generating test inputs that trigger new coverage,

compared to the built-in mutation strategies in AFL. The

efficiency of all mutation strategies needs to be improved.

F. Performance Overhead (RQ5)

The fuzzing process of a test input includes three major steps:

parsing, mutation and execution. Among them, the parsing step

is one-off for each test input, followed by a large number of

mutations and executions. In Fig. 10a and 10b, we show the

parsing time of JavaScript/XML test inputs in milliseconds (the

y-axis) with respect to the size of test input files in bytes (the

x-axis). Without loss of generality, we only report the results

for the test inputs kept in the queue. In detail, the parsing time

includes the time to read, parse and traverse a test input file.

Approximately, the parsing time is linearly correlated to the size
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Fig. 10: The Time to Read, Parse and Traverse Test Inputs with Respect to Different Size

of test input files. JavaScript test inputs’ size is mostly under 10

KB and their parsing time is 199.3 milliseconds on average;

and the parsing time of XML test inputs is 2.0 milliseconds on

average. Notice that the parser generated using ANLTR is not

optimized for the performance. We may reduce the execution

time further by improving the parser’s implementation.

Apart from the parsing time, the major performance overhead

Superion imposes on mutation and execution is caused by our

tree-based mutation. Table VI reports the overhead of applying

tree-based mutation (in the second column) as well as the cor-

responding overhead of executing the mutated test input (in the

third column). For small projects like libplist, it is very fast to
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TABLE VI: Performance Overhead on Target Programs

Program Tree-Based Mutation (ms) Execution (ms)

libplist 0.63 0.39

WebKit 5.65 12.50

Jerryscript 5.65 3.57

ChakraCore 5.65 20.00

perform tree-based mutation and execution, i.e., the mutation

took 0.63 ms and the execution took 0.39 ms on average. For

large projects such as WebKit, Jerryscript and ChakraCore, the

execution took much more time; e.g., executing a JavaScript

input on ChakraCore took 20.00 ms, while the mutation took

5.65 ms on average. Considering the improvements to bug-

finding capability and code coverage, the performance overhead

introduced by Superion is acceptable.

In summary, Superion introduces additional overhead due

to our grammar-aware tree-based mutation strategy. How-

ever, such overhead is still acceptable considering the im-

proved bug-finding capability and code coverage.

G. Case Study
The JavaScript code fragment in Fig. 11 gives a representa-

tive test input that was generated by Superion and triggered an

integer overflow vulnerability in WebKit, assigned CVE-2017-

7107. In particular, this vulnerability is triggered because the

method setInput in class RegExpCachedResult forgets

to reify the leftContext and rightContext. As a result,

when later WebKit attempts to reify them, it will end up using

indices into an old input string to create a substring of a new

input string. For the test input in Fig. 11, WebKit tried to get

a substring through jsSubstring, whose length is 1 (i.e.,

length of “a”) - 2 (i.e., m_result.end of “ss”) = -1, as

shown in Fig. 12, which is a very large number when treated

as positive. Thus, an integer overflow vulnerability is caused.
The test input in Fig. 11 was actually simplified from a large

test input for the ease of presentation. It was generated by apply-

ing our tree-based mutation on the two test inputs in Fig. 13 and

Fig. 14. This proof-of-concept was not generated through one

mutation, but was generated after several times of mutations.

The intermediate test inputs that triggered new coverage were

kept and added to the queue for further mutations. Eventually, it

evolved into the proof-of-concept. This vulnerability was not

triggered by AFL. This indicates that AFL’s built-in mutation

is not effective in fuzzing programs that process structured

inputs, where our tree-based mutation becomes effective.

H. Discussion
Threats. First, we did not evaluate Superion on standardized

data sets, e.g., LAVA [21] and CGC [2]. Many of the programs

in these data sets process unstructured inputs, or are difficult to

come up with a grammar. Hence, we did not use them. Instead,

we used four real-life, large-scale, well-fuzzed programs. Sec-

ond, we did not empirically compare Superion with the two

mostly closely related grammar-aware mutation-based fuzzers,

LangFuzz [32] and IFuzzer [62]. LangFuzz is not publicly avail-

able. It heavily relies on the seed, which is a collection of proof-

of-concepts (POCs) that are difficult to obtain. Superion does

var str="ss";
var re=str.replace(/\b\w+\b/g);
RegExp.input="a";
RegExp.rightContext;

Fig. 11: A Proof-of-Concept of CVE-2017-7107

JSString* RegExpCachedResult::rightContext(ExecState* exec, JSObject* owner)
{
// Make sure we’re reified.
lastResult(exec, owner);
if (!m_reifiedRightContext) {
unsigned length = m_reifiedInput->length();
m_reifiedRightContext.set(exec->vm(), owner, m_result.end != length ?

jsSubstring(exec, m_reifiedInput.get(), m_result.end, length - m_result.end)
: jsEmptyString(exec));

}
return m_reifiedRightContext.get();

}

Fig. 12: The Vulnerable Code Fragment for CVE-2017-7107

...
var str = "ss"
var re=str.replace(/\b\w+\b/g);
...

Fig. 13: Source Test Input to Trigger CVE-2017-7107

...
write(’RegExp.input: ’ + RegExp.input);
...
write(’RegExp.rightContext: ’ + RegExp.rightContext);
...

Fig. 14: Source Test Input to Trigger CVE-2017-7107

not require such prior knowledge, and thus we did not compare

Superion with LangFuzz. IFuzzer is open-source, but it lacks

sufficient documentation to set up. Moreover, most bugs found

by IFuzzer were not vulnerabilities, and only one CVE was ex-

posed in their evaluation. Instead, we compared Superion with

jsfunfuzz, a successful grammar-aware generation-based fuzzer

for JavaScript engines. Third, we did not have a statistical sig-

nificance analysis argued by Klees et al. [38]. This is due to the

large time scale and resources involved in fuzzing real-life and

large-scale programs for finding serious vulnerabilities.

Limitation. Superion needs a user-provided grammar, which

limits the applicability to only publicly documented formats that

have specified grammars. Therefore, Superion may have trouble

finding proprietary grammars or undocumented extensions to

standard grammars. However, several automatic grammar infer-

ence techniques [7, 28, 33, 34, 63] have been proposed, we plan

to integrate such techniques to have wider applicability.

IV. RELATED WORK

Instead of listing all related work, we focus our discussion on

the most relevant fuzzing work in five aspects: guided mutation,

grammar-based mutation, block-based generation, grammar-

based generation, and fuzzing boosting.

Guided Mutation. Mutation-based fuzzing was proposed to

generate test inputs by randomly mutating well-formed test in-

puts [46]. Then, a large body of work has been developed to use

heuristics to guide mutation. AFL [71], Steelix [43], FairFuzz

[42] and CollAFL [23] use coverage to achieve the guidance,

and SlowFuzz [52] and PerfFuzz [41] further use resource usage

to realize the guidance. BuzzFuzz [24], Vuzzer [55] and Angora

[15] leverage taint analysis to identify those interesting bytes for

mutation. SAGE [26, 27], Babić et al. [6], Pham et al. [53] and
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Badger [48] leverage symbolic execution to facilitate fuzzing.

Dowser [30], TaintScope [65] and BORG [47] integrate taint

analysis with symbolic execution to guide fuzzing. Driller [59]

combines fuzzing and concolic execution to discover deep bugs.

Kargén and Shahmehri [37] perform mutations on the machine

code of the generating programs instead of directly on a test in-

put in order to leverage the information about the input format

encoded in the generating programs. In summary, these fuzzing

techniques target programs that process compact or unstructured

inputs, which become less effective for programs that process

structured inputs. Complementary to them, Superion can effec-

tively fuzz programs that process structured inputs.

It is worth mentioning that application-specific fuzzers have

been attracting great interests, e.g., compiler fuzzing [16, 18, 39,

40, 44, 60], kernel fuzzing [17, 31, 58], IoT (Internet of Things)

fuzzing [14], OS fuzzing [49] and smart contract fuzzing [36].

It is interesting to investigate how to extend our general-purpose

fuzzer (e.g., by designing new mutation operators or feedback

mechanisms) to be effective in fuzzing specific applications.

Grammar-Based Mutation. Several techniques have been

proposed to perform mutations based on grammar. MongoDB’s

fuzzer [29] wreaks controlled havoc on the AST of a JavaScript

test input. While our tree-based mutation is similar, Superion

conducts the mutations in an incremental way by keeping those

interesting intermediate test inputs for further fuzzing. Similarly,

μ4SQLi [5] applies a set of mutation operators on valid SQLs to

generate syntactically correct and executable SQLs that can re-

veal SQL vulnerabilities. However, both MongoDB and μ4SQLi

are specifically designed for JavaScript or SQL, and hence they

may not work for other structured inputs. Superion is general

for other structured inputs as long as their grammar is available.

LangFuzz [32] uses a grammar to separate previously failing

test input to code fragments and save them into a fragment pool.

Then, some code fragments of a test input are mutated by replac-

ing them with the same type of code fragments in the pool. Sim-

ilarly, IFuzzer [62] uses the grammar to extract code fragments

from test inputs and recomposes them in an evolutionary way.

Different from these two blackbox fuzzers, Superion brings

grammar-awareness into coverage-based greybox fuzzers.

Block-Based Generation. As some bytes in a test input are

used collectively as a single value in the program, they should

be considered together as a block during fuzzing. Following this

observation, TestMiner [19] first mines literals from a corpus of

test inputs and then queries the mined data for values suitable

for a given method under test. These predicted values are then

used as test inputs during test generation. It is not clear whether

it works well for highly-structured inputs such as JavaScript as

they experimented with simple formats such as IBAN, SQL,

E-mail and Network address. Spike [4] and Peach [3] use input

models, specifying the format of data chunks and integrity

constraints, to regard test inputs as blocks of data, and leverage

mutations to generate new test inputs. While being effective in

fuzzing programs that process weakly-structured inputs (e.g.,

images and protocols), these approaches become less effective

for highly-structured inputs (e.g., JavaScript). Complementary

to them, Superion is designed for such highly-structured inputs.

Grammar-Based Generation. Another line of work is to

use the grammar to directly generate test inputs. mangleme [72]

is an automated broken HTML generator and browser fuzzer.

jsfunfuzz [57] uses specific knowledge about past and common

vulnerabilities and hard-coded rules to generate new test inputs.

Dewey et al. [20] propose to use constraint logic programming

for program generation. Valotta [61] uses his domain knowledge

to manually build a fuzzer to test browsers. While being effec-

tive in finding vulnerabilities, they all rely on some hard-coded

or manually-specified rules to express semantic rules, which

hinder their applications to a wider audience.

Godefroid et al. [25] apply symbolic execution to generate

grammar-based constraints, and use grammar-based constraint

solver to generate test inputs. CSmith [69] iteratively and ran-

domly selects one production rule in the grammar to generate C

programs. Domato [22] generates test inputs from scratch given

the grammars that specify HTML/CSS structures and JavaScript

objects, properties and functions. Domato also fuzzed WebKit

for three months; but none of our bugs were found by Domato.

This is a strong evidence that Superion has the characteristics

that grammar-aware fuzzers without coverage feedback do not

have. Skyfire [64] and TreeFuzz [51] learn a probabilistic model

from the grammar and a corpus of test inputs to generate test

inputs. They are generation-based, while Superion is grammar-

aware mutation-based, which incrementally utilizes the inter-

esting behaviors embedded in previous interesting test inputs.

Fuzzing Boosting. Another thread of work focuses on im-

proving the efficiency of fuzzing, e.g., seed selection [56], seed

scheduling [9, 66], parameter tuning [10, 35], directed fuzzing

[8, 12, 13] to reproduce crashes or assess potential bugs found

by vulnerable code matching [11, 68], and operating primitives

[67]. These boosting techniques are orthogonal to Superion.

V. CONCLUSIONS

In this paper, we propose a grammar-aware coverage-based

greybox fuzzing approach, Superion, for programs that process

structured inputs. Specifically, we propose a grammar-aware

trimming strategy and two grammar-aware mutation strategies

to effectively trim and mutate test inputs while keeping the input

structure valid, quickly carrying the fuzzing exploration into

width and depth. Our experimental study on several XML and

JavaScript engines has demonstrated that Superion improved

code coverage and bug-finding capability over AFL. Moreover,

Superion found 34 new bugs, among which 22 new vulnera-

bilities were discovered and 19 CVEs were assigned.
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