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A Comprehensive Study on Static Application
Security Testing (SAST) Tools for Android
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Abstract—To identify security vulnerabilities in Android appli-
cations, numerous static application security testing (SAST) tools
have been proposed. However, it poses significant challenges to
assess their overall performance on diverse vulnerability types.
The task is non-trivial and poses considerable challenges. Firstly,
the absence of a unified evaluation platform for defining and
describing tools’ supported vulnerability types, coupled with the
lack of normalization for the intricate and varied reports generated
by different tools, significantly adds to the complexity. Secondly,
there is a scarcity of adequate benchmarks, particularly those
derived from real-world scenarios. To address these problems,
we are the first to propose a unified platform named VulsTotal,
supporting various vulnerability types, enabling comprehensive
and versatile analysis across diverse SAST tools. Specifically,
we begin by meticulously selecting 11 free and open-sourced
SAST tools from a pool of 97 existing options, adhering to
clearly defined criteria. After that, we invest significant efforts in
comprehending the detection rules of each tool, subsequently
unifying 67 general/common vulnerability types for Android
SAST tools. We also redefine and implement a standardized
reporting format, ensuring uniformity in presenting results across
all tools. Additionally, to mitigate the problem of benchmarks, we
conducted a manual analysis of huge amounts of CVEs to construct
a new CVE-based benchmark based on our comprehension of
Android app vulnerabilities. Leveraging the evaluation platform,
which integrates both existing synthetic benchmarks and newly
constructed CVE-based benchmarks from this study, we conducted
a comprehensive analysis to evaluate and compare these selected
tools from various perspectives, such as general vulnerability
type coverage, type consistency, tool effectiveness, and time
performance. Our observations yielded impressive findings, like
the technical reasons underlying the performance, which provide
insights for different stakeholders.
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I. INTRODUCTION

RECENTLY, mobile devices have become an indispensable
part of people’s daily lives. They serve as a platform for

numerous mobile applications (apps) catering to various needs,
such as shopping, banking, and music, among others [1]–[3].
While these apps greatly enhance convenience, they also store
a vast amount of user-related information, leading to security
risks such as sensitive data leakage [4]–[7] and ACE attack [8].
For example, a critical zero-day vulnerability [8] discovered
in WhatsApp allows attackers to remotely install spyware via
specially crafted SRTCP packets. Exploited by NSO Group, it
executed arbitrary code without requiring user call response,
impacting numerous users. Consequently, guaranteeing the
safety and dependability of mobile apps has become a top
priority for all stakeholders. To ensure the reliability of mobile
apps, both academia and industry have made significant efforts.
A plethora of Static Application Security Tools (SAST) for
checking security vulnerabilities have been developed. These
tools play a vital role in identifying potential threats and
mitigating security risks, thus enhancing the overall security
posture of mobile apps [9]–[16].

Evaluating the overall effectiveness of SAST tools offers
significant benefits to various stakeholders, including tool
developers, users, and researchers. While numerous tools have
been designed to address specific vulnerability types, it is crucial
to grasp how well SAST tools work with general vulnerability
types. This understanding serves as a guidepost for developers
to bolster support for various general or common vulnerability
types in the Android domain and also aids users in choosing
tools offering broader, more inclusive vulnerability detection.
The existing studies [17]–[19] have been conducted to evaluate
the detection capabilities, but they often suffer from two main
problems. (1) Firstly, their absence of a unified platform means
that comparisons can only focus on coarse-grained quantities
rather than fine-grained vulnerability types. For instance, the
Android SAST tool named SUPER [11] consolidates various
cryptographic vulnerability types under the broad type of “Weak
Algorithms” whereas other tools, like AUSERA [7], [13], [20],
offer a more detailed breakdown, distinguishing between “AES
encryption issue” and “DES encryption issue”. This leads
existing approaches to prefer to evaluate these vulnerabilities
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primarily under the broad “Cryptography” category at a coarse-
grained level. Moreover, the lack of normalization across
diverse tool reports also amplifies complexity. These hinder a
comprehensive understanding of the strengths and weaknesses
of different tools from this important aspect, limiting their
potential for further improvement. (2) Secondly, the evaluation
process typically relies solely on synthetic benchmarks [21],
which may not precisely represent real-world scenarios. Hence,
the effectiveness of these tools in real-world environments may
not be adequately gauged, potentially leading to discrepancies
between lab-based assessments and practical applications.

Indeed, conducting a comprehensive evaluation of SAST
tools faces substantial challenges that need to be addressed
to improve the evaluation process effectively. (1) One of the
significant obstacles is the various vulnerability types supported
by different SAST tools, tailored to their specific detection
scenarios. Consequently, direct comparisons of their supported
types become impractical due to the lack of standardized
documentation specifications for many tools. As for the issue
of varied report formats and contents among SAST tools, this
creates barriers to directly comparing valuable vulnerability
reports across tools. To overcome these, huge efforts should
focus on establishing a unified platform or set of guidelines for
defining and describing their complex and diverse vulnerability
types, and normalizing vulnerability reports format for enabling
automatic comparison, allowing for more meaningful and fair
evaluation between different tools. (2) Further, as synthetic
benchmarks are widely used in evaluating SAST tools, we
endeavored to comprehensively evaluate the performance of
these tools by constructing a real-world benchmark based on
Android-specific CVEs. However, challenges arose due to the
lack of clarity in the descriptions provided by some CVEs and
the absence of detailed vulnerability information.

In detail, to tackle these challenges, we first selected 11
free and open-sourced Android SAST tools based on well-
defined criteria from 99 existing static analysis tools as platform
bases. We then meticulously reviewed the metadata of each
SAST tool and unified the various supported vulnerability
types of different tools, resulting in 67 unified general/common
types within Android landscope as a taxonomy. Further, we
adjusted SAST tools’ source code for unified TXT result reports
and crafted parsers to extract vulnerability reports achieving
normalization. Based on the tool bases, unified taxonomy, and
parsers, we proposed a platform, named VulsTotal, to help
effectively evaluate the detection capability of Android SAST
tools. We highlight the aforementioned key steps in developing
the platform required a total investment of five person-months.
Secondly, to overcome the challenges of constructing real-world
benchmarks, we initially employed automated methods to filter
out-of-scope CVEs. Subsequently, we dedicated significant
human effort to manually label the remaining CVEs based
on their descriptions and provided resources. This meticulous
process allowed us to build a CVE-based benchmark tailored
to our research scope. We utilized the platform and performed
a comprehensive evaluation of selected SAST tools based
on different synthetic benchmarks (i.e., GHERA [22] and
MSTG&PIVAA [23], [24]) and a newly constructed CVE-
based benchmark. Based on it, we gained valuable insights into

these tools’ performance across various dimensions, aiming to
answer four research questions in § III.

Our comprehensive study reveals that (1) none of the selected
SAST tools fully cover the 67 general/common vulnerability
types, with the highest coverage reaching 67%, indicating room
for improvement in their detection capabilities (RQ1). (2) The
results on synthetic benchmarks show that there is a significant
gap between the supported vulnerability types of these SAST
tools and the types injected in these synthetic benchmarks. The
highest coverage rates for GHERA and MSTG&PIVAA are
41.18% and 50%, respectively (RQ1). (3) The tools mainly
use the method as pattern-matching for vulnerability detection,
leaving a notable gap for scenario-related logical vulnerability
types found in Android-specific CVEs and GHERA, like input
validation vulnerabilities. (RQ2) (4) Due to the various support
statuses of unified vulnerability types for these tools, their
detection results cannot be quantitatively compared across
different tools. Instead, we can only independently investigate
the detection capability of each tool on these benchmarks.
Granularity issues in pattern matching, a lack of code context,
and analysis failure are the underlying causes of the tools’
effectiveness; therefore, the tools perform similarly on both
synthetic and real-world benchmarks in our study (RQ3). (5)
In terms of time performance, the bytecode-based SAST tools
scan faster than most SAST tools that employ source code
analysis (RQ4). Finally, we also discussed and highlighted
suggestions for different stakeholders.

In summary, we made the following contributions.
• To the best of our knowledge, we are the first to build a

unified platform, named VulsTotal, for evaluating SAST
tools for Android, which combines the detection capa-
bility of 11 selected SAST tools by making substantial
efforts to unify vulnerability types, including 67 general/-
common types as a taxonomy, and normalize vulnerability
reports with five person-months. Additionally, VulsTotal
boasts 4,000 more lines of Python code.

• To comprehensively evaluate Android SAST tools, we
constructed a new real-world benchmark based on finely
filtered 292,776 CVE entries, comprising 250 Android-
specific CVEs and 229 APKs, and 34 vulnerability types.

• Based on VulsTotal, the existing synthetic benchmarks,
and newly-constructed CVE benchmarks, we further
comprehensively evaluated the detection capability of
the 11 tools from different dimensions such as type
coverage, type consistency, detection effectiveness, and
time performance. We finally discuss some specific and
useful suggestions for tool developers and users.

We have released all relevant data and code used in our
study on GitHub [25].

II. OVERVIEW OF OUR STUDY

This section introduces the key parts of our empirical study.
As shown in Figure 1, we first introduce the criteria for
tool selection. Next, we describe platform construction steps
involving vulnerability type unification and report normalization.
Lastly, we discuss the details of benchmark construction.
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Fig. 1. Overview of our study.

TABLE I. THREE SETS OF KEYWORDS USED FOR TOOL COLLECTION.

Android-specific Constraints on tools Research objectives

APP Security Analysis Tools
Android Vulnerability Detection Effectiveness Analysis
Mobile Application Static Analysis Systematic Literature Review

Taint Analysis

A. SAST Tool Selection

To thoroughly evaluate the vulnerability detection capabilities
of Android SAST tools, we sought out a diverse set of SAST
tools from both academic and industrial domains. Specifically,
we scoped our research to Android SAST tools and established
a dynamic and iterative process for crafting keyword sets
which are displayed in Table I. We primarily searched tools
from recent literature and conducted a systematic literature
review (SLR) following well-established guidelines [26]–[28]
to ensure comprehensiveness and systematicness. Using the
three sets of keywords from Table I, we applied logical OR
within each set and logical AND between sets to form precise
search strings. Further, we deeply mined ACM [29], IEEE [30],
ScienceDirect [31], SpringerLink [32], and DBLP [33] to
conduct advanced search using search strings, strictly screen,
and finally lock 7 core literatures [13], [17]–[19], [34]–[36]. The
entire process was conducted by the first author, with co-authors
performing cross-validation to ensure accuracy. We further
retrieved Android SAST tools on GitHub using the above search
strings and sorted the results by star numbers. We focused on
collecting tools exceeding 10 stars, ensuring the inclusion of
relatively popular and widely recognized tools. We conclude
by obtaining a tool list from two prominent websites, including
NIST [37] and Gartner [38], using the above search strings for
searching as a supplement. After collating data and filtering out
duplicate entries, we identified 99 pertinent SAST tools in the
Android vulnerability research domain, spanning both industry
and academia (all details of tool lists and screening process
are available in GitHub [25]). To facilitate the selection and
comparison of Android SAST tools for our study, we designed
six selection criteria as follows:
① Free of charge and transparent. The Android SAST tools
must be free of charge. While commercial tools are indeed
prevalent in the industry, they often entail substantial costs,
which would be prohibitive for our large-scale experiment.
Additionally, since we attempted to explore the internal imple-
mentation of the tool candidates, we filtered out 47 tools that are
not transparent or free, such as Quixxi [39], ImmuniWeb [40],
and Checkmarx SAST [41].
② GitHub stars. We tailed the star number for all tools

TABLE II. TOOL PROFILE. “# STARS” INDICATES THE NUMBER OF
GITHUB STARS. “M.” REFERS TO WHETHER THE TOOL IS MAINTAINED.

“B.|S.” DENOTES SOURCE CODE OR BYTECODE ANALYSIS. “SYN.|SEM.”
DENOTES SYNTAX-BASED OR SEMANTIC-BASED CORE TECHNOLOGIES.

Tool # Stars Last Update Version Language M. B.|S. Syn.|Sem.

MobSF 15.4k 12/04/2023 v3.6.0-Beta Python ! S. Syn.
QARK 3.1k 04/05/2019 v0.9-Alpha.1 Python % S. Syn.

AndroBugs 1.1k 11/12/2015 v1.0.0 Python % B. Sem.
APKHunt 622 07/05/2023 07/05/2023 Go ! S. Syn.

SUPER 411 12/10/2018 0.5.1 Rust % S. Syn.
JAADAS 338 04/12/2017 0.1-Alpha Java, Scala % B. Sem.

DroidStatx 115 12/09/2018 12/09/2018 Python % B. Sem.
Marvin 68 11/23/2018 0.1-Alpha Python % B. Sem.

Trueseeing 52 11/24/2023 2.1.9 Python ! B. Sem.
AUSERA 30 10/09/2023 10/09/2023 Java, Python ! B. Sem.
SPECK 11 10/10/2023 10/23/2022 Python ! S. Syn.

Logging Data Exposure 
(Unified  vulnerability 

type in VulsTotal)

  if (minSdkVersion) < 16: 
     return  “Logs are world 
readable on pre-4.1 devices.”  

QARK

Vulnerability Source Code

• Unchecked 
output in LogsSUPER

Vulnerability Identifier

• The App logs information. 
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should never be logged.
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Vulnerability Description

• The Information 
Leaks via Logs

APKHunt

Vulnerability Identifier

• Detected 
logging

Trueseeing

Vulnerability Identifier

• Log data 
leakageAUSERA

Vulnerability Identifier

Fig. 2. Example of mapping unified vulnerability types.

available on GitHub and filtered out tools with fewer than
10 stars to focus on more widely recognized and potentially
more established tools. We finally excluded 1 tool (i.e.,
WeChecker [42]).
③ Available documentation and usability. The Android SAST
tools must be operational and accompanied by available
documentation, eliminating the human bias introduced by the
efforts required to discover how to build and use them. Thus,
we filtered out 7 tools that lacked proper documentation or not
working, such as DroidLegacy [43] (lack of usage docs).
④ Tools compatible with APK files. As the APK files provide a
comprehensive representation of an Android application, aiding
in more realistic vulnerability discovery and analysis, we filtered
out 10 tools that do not support APK files as input, such as
Android Check [44] and FindSecurityBugs [45].
⑤ Command-line interface. Given our objective of automating
large-scale scans, while ensuring seamless integration of tool
functions onto our provided unified platform VulsTotal, we tend
to choose tools that provide command-line interfaces. Web-
UI-based tools without programmable API functionality are

3



impractical. Therefore, we filtered out 2 tools. As an illustration,
Aparoid [46] was excluded due to the lack of API integration,
contrasting with tools like MobSF [15] which inherently include
API, both were Web-UI-based.
⑥ Generalized vulnerability detection. We aim to understand
the extent of coverage for various vulnerability types by
current Android SAST tools. Thus, we focused on tools
that offer comprehensive and general coverage across various
vulnerability types. Therefore, we excluded 21 tools that
are designed to detect specific vulnerability types, such as
SMV-Hunter [47] (detecting SSL/TLS MITM vulnerabilities
only), CogniCrypt [48] (detecting vulnerable cryptographic
API usage only), and FlowDroid [4] (using taint analysis to
detect vulnerability types related to sensitive data). Indeed,
numerous empirical studies are dedicated to the evaluation of
tools designed for the detection of specific types [4], [17], [48].

Finally, we obtained 11 Android SAST tools: MobSF [15],
AndroBugs [9], QARK [10], APKHunt [49], SUPER [11],
JAADAS [14], DroidStatx [50], Marvin [16], Trueseeing [51],
AUSERA [13], and SPECK [12]. We have uploaded the full
candidate SAST tool list [25] and all the detailed information.
Table II provides a distilled yet holistic view of the key attributes
of each tool, including the star number on GitHub, the last
updated date, version, programming language, whether still
maintained or not, analysis based on source code or bytecode,
and core techniques, thus enabling a systematic comparison
and analysis of their potential effectiveness. We next outline
the core techniques of these tools from a structured perspective.

Core techniques within selected tools. These tools can be
divided into two categories based on the analysis objectives:
Source code analysis and Bytecode analysis. Upon obtaining
the analysis objects, tools employ Syntax-based or Semantic-
based technologies to detect vulnerabilities. Syntax-based tools
identify potential threats through predefined vulnerability pat-
terns such as sensitive APIs using techniques including regular
expression matching, string matching, and AST (Abstract
Syntax Trees) matching. Semantic-based tools usually involve
control-flow and data-flow analysis to track execution paths
and examine data flows. Refer to Table II, among the selected
tools, the source-code analysis tools include APKHunt, SUPER,
SPECK, MobSF, and QARK. The first three tools use string-
based pattern matching on decompiled code, whereas MobSF
and QARK employ AST-based pattern matching. Bytecode
analysis tools generally leverage existing SAST frameworks
for semantic-based analysis. Examples include AndroBugs,
which uses a modified version of Androguard [52]; DroidStatx,
which implements customized control and data-flow analysis
based on Androguard; JAADAS, which employs Soot [53] and
HEROS [54] for taint and reachability analysis; Marvin, which
integrates Soot and SAAF [55]; AUSERA, which combines
Soot and FlowDroid [56]; and TrueSeeing, which deploys
proprietary data-flow analysis.

B. Construction of The Platform VulsTotal

Based on the two steps above, we design and implement the
platform by introducing the following key phases.

1) Vulnerability Type Unification: Given that SAST tools
often introduce their own supported vulnerability identifiers,
there is a notable challenge in the automated comparison among
different tools. For instance, for the same type mentioned
in Figure 2, AUSERA uses the identifier “Logging data leakage”
for the log data exposure vulnerability, while SUPER employs
“Unchecked output in Logs”. This discrepancy poses difficulty
in automatically determining whether a given SAST tool
successfully identifies a specific vulnerability type. As such,
there is a need for a unified taxonomy that can streamline
the process of comparing different SAST tools. To address
this, we conducted a two-phase manual review by engaging
three co-authors for the vulnerability identifiers unification: ①
Collection of supported vulnerability identifiers: Since none
of the 11 selected tools provided well-documented identifier
sets, we manually reviewed their documentation, configuration
files, and source code. This review involved extracting the
vulnerability identifiers/descriptions and the corresponding
detection rules from each tool. Consequently, we obtained the
vulnerability identifier sets from the selected tools, each includes
the vulnerability identifiers, descriptions, and the corresponding
source code snippets that were implemented to detect these
vulnerability types. ② Construction of a unified taxonomy: The
second phase involved constructing a unified taxonomy using
the collected vulnerability identifier sets above.

Two key challenges arose during this phase: C1: Ambiguity
in vulnerability descriptions. Some tools use vague or non-
descriptive vulnerability identifiers, making it difficult to
determine the vulnerability types they support. As depicted
in Figure 2, we discovered that 6 tools (such as AUSERA) can
detect log data exposure with similar vulnerability identifiers
and MobSF maintains a vulnerability description to present
such type rather than an identifier. Contrarily, QARK lacks both,
which necessitates diving into its source code to comprehend
the implementation of its detection rules. We then examined
whether the trigger code detected similar vulnerability features
as Log.(v|d|i|w|e|f|s) which is a regular expression
and indicative of log data exposure vulnerability to confirm
the mapping results. After a thorough review, we unified the
identifiers from the other five tools as “Log Data Exposure”,
since QARK’s Log vulnerability identified did not align with
them. C2: Variance in granularities. The granularity of the
vulnerability identifiers varied among tools. For instance, for
cryptographic vulnerabilities, SUPER’s description was less
detailed than that of other tools. SUPER merely used “Weak
Algorithm” as a vulnerability identifier, while others used more
fine-grained descriptions, such as “AES encryption issues” by
AUSERA. To resolve this, we delved deeper into their corre-
sponding code implementation to ascertain the vulnerability
types they supported. After overcoming these challenges, which
took us 3 person-months of rigorous type implementation
review, we built the unified taxonomy by combining unified
vulnerability types. Vulnerability types are included only if
supported by at least two tools. To enhance the clarity of
types, we renamed them by using a unified identifier to clearly
reflect the root causes they represent. In the end, as displayed
in Table III, we established a unified taxonomy including 67
vulnerability types. To increase clarity and navigability, inspired
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by Chen et al.’s taxonomy [13], we grouped the 67 distinct
types into 5 broader categories. We manually categorized each
type into five categories based on specific descriptions provided
by OWASP Top 10. Specifically, three co-authors independently
reviewed the “Security Weaknesses” section of each OWASP
risk page [57] and the detection rules (source code and rule
documentation). Afterward, we conducted discussions and cross-
validation to ensure consistency. This structure enhances the
identification of vulnerability types and offers an overarching
view of the tools’ detection capabilities. This unified taxonomy
serves as a reference point for VulsTotal, facilitating an
automated comparison of the detection capabilities of the
selected tools.

2) Vulnerability Report Normalization: The challenge we
encountered involved disparate report formats and contents
across various SAST tools, ranging from HTML web pages
and terminal outputs to TXT and JSON files, impeding large-
scale automated analysis. For instance, MobSF generates HTML
reports, whereas SPECK prints reports in the terminal. Tools
such as SUPER offer selectable formats including JSON and
TXT. To overcome this, we modified the source code of
these tools, aligning their report output to a consistent and
processable file form. Importantly, these modifications did not
affect the tools’ detection logic, ensuring the authenticity of
the detection results. Consequently, this normalization process
ensured a uniform reporting format (i.e., TXT), facilitating a
fair comparison and evaluation of various tools.

Next, we turned our attention to aligning report contents.
The disparity in vulnerability types and descriptions, along
with information unrelated to vulnerabilities in the reports,
added another layer of complexity to our analysis. To solve
this, we built a separate parser for each tool. These parsers
were made to carefully pick out the vulnerability types and
descriptions from the reports by regular matching, while also
removing unnecessary information. Therefore, we achieved
standardized and simplified content for all tool reports. This
made it convenient to compare and understand the detection
results from different tools.

We enhanced VulsTotal with automation for scanning mul-
tiple APKs and integrated each tool’s vulnerability detection.
Ultimately, we choose the latest successfully configured version
of each tool listed in Table II and use their default configuration.
After scanning with detection interfaces and using parsed
results, we mapped vulnerabilities to corresponding types in
taxonomy (Table III), producing a standardized result report.
It is worth noting that vulnerability type unification relies on
the vulnerability mapping database, which is extensible.

C. Construction of Benchmarks
To evaluate the performance of tools, we collected two

kinds of benchmarks: synthetic benchmarks (with injected
vulnerabilities) and CVE-based benchmarks (with real-world
vulnerabilities).

1) Synthetic Benchmarks: We collected synthetic bench-
marks from both the academy and industry. Although many dif-
ferent kinds of synthetic benchmarks such as DroidBench [58],
ICC-Bench [6], and UBCBench [17] are widely used in the

TABLE III. THE RESULTS OF 67 UNIFIED VULNERABILITY TYPES.
(TYPES IN THE GRAY INDICATE THAT THEY WERE ONLY DETECTED BY TWO
OF THE TOOLS. “# OUT OF SCOPE” INDICATES THE NUMBER OF SECURITY

ALERTS RATHER THAN VULNERABILITY TYPES. )

Category Unified Vulnerability Types

M
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A
PK
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S
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M
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se
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A
U

SE
R

A

SP
E

C
K

Sensitive
Data

Exposure
Risks

Webview Password Exposure ⋆ ⋆ ⋆
Logging Data Exposure ⋆ ⋆ ⋆ ⋆ ⋆
External/Internal Data Exposure ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Cache Data Disclosure ⋆ ⋆

Temp File Data Exposure ⋆ ⋆ ⋆ ⋆
SQLite Data Exposure ⋆ ⋆

SMS Data Exposure ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Clipboard Data Exposure ⋆ ⋆

Hardcoded IP Exposure ⋆ ⋆ ⋆ ⋆
Hardcoded Email Exposure ⋆ ⋆

Device ID Exposure ⋆ ⋆ ⋆
Android ID Exposure ⋆ ⋆

Hardcoded URL Exposure ⋆ ⋆ ⋆
Hardcoded Sensitive Data Exposure ⋆ ⋆ ⋆ ⋆

Insufficient
Encryption

Risks

Insecure Base64 Encryption ⋆ ⋆ ⋆
Insecure Blowfish Encryption ⋆ ⋆

Improper Handle DES Encryption ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Improper Handle AES Encryption ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Improper Handle RSA Encryption ⋆ ⋆ ⋆ ⋆ ⋆
Improper Handle RC4 Encryption ⋆ ⋆ ⋆
Improper Handle Insecure Hash ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Use Insecure Random ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Weak CBC Cipher Modes ⋆ ⋆

Hardcoded IV Issue ⋆ ⋆ ⋆
Improper Package Hardcoded ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Security
Misconfig

Risks

Misuse Empty Pending Intent Issue ⋆ ⋆
Improper Receiver Registration ⋆ ⋆ ⋆
Misuse Implicit Intent Issue ⋆ ⋆ ⋆ ⋆ ⋆
Exported Not Protected Components ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Unprotected Content Provider ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Sticky Broadcast Intent Issue ⋆ ⋆
ContentProvider Permissions Issue ⋆ ⋆

Manifest Screenshot Harvest ⋆ ⋆ ⋆ ⋆ ⋆
Manifest Backup Issue ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Manifest Debug Issue ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Mode World Storage Readable Issue ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Mode World Storage Writable Issue ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Insecure
Code

Execution
Risks

Dynamic Code Loading Issue ⋆ ⋆ ⋆ ⋆
Runtime Command Execution Issue ⋆ ⋆ ⋆ ⋆ ⋆
Rooted Device Detection ⋆ ⋆ ⋆ ⋆ ⋆
Super User Privileges ⋆ ⋆

Sensitive Functionality (loadlibrary) ⋆ ⋆ ⋆
SQL Injection ⋆ ⋆ ⋆ ⋆ ⋆
Fragment Injection ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
ContentProvider Openfile ⋆ ⋆ ⋆

Insecure
Network
Config
Risks

Using HTTP Issue ⋆ ⋆ ⋆ ⋆
ClearText Traffic Issue ⋆ ⋆ ⋆ ⋆ ⋆
Debug CA Configuration Issue ⋆ ⋆
Use Expired Certificate ⋆ ⋆
Use SHA1 MD5 Certificate ⋆ ⋆
Android Debug Certificate ⋆ ⋆

Insecure AllowUserCA ⋆ ⋆ ⋆ ⋆
Use Insecure Socket ⋆ ⋆
Use Firebase exposed ⋆ ⋆

Use Insecure SSL Socket Factory ⋆ ⋆ ⋆ ⋆
Use Invalid Hostname Verification ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Use Invalid Server Verification ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Use Allow All Hostname Verification ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
WebView Cert Validation Issue ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Webview Sop Warning ⋆ ⋆

Webview JavaScript Execution ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Webview Java Objects Exposure ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Webview Insecure Load Plugin ⋆ ⋆

Webview Local File Access ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
WebView Local File Cleanup ⋆ ⋆

WebView Insecure URL Loading ⋆ ⋆ ⋆
WebView Remote Debugging ⋆ ⋆

Metadata
# Overlapped vulnerability types 39 21 27 45 32 15 21 28 21 40 23
# Unique vulnerability types 12 2 5 15 0 3 4 3 5 1 4
# Out of scope 26 2 21 16 14 1 13 15 8 0 6

academy, they are used to evaluate the effectiveness of static
taint analysis tools and not suitable under our evaluation
scenario because selected SAST tools focus on detecting
common vulnerability types instead of specific types. By
referring to the evaluation and comparison results in [21], we
choose GHERA [59] since it is a representative benchmark [59]
maintaining more vulnerability types and providing both benign
and secure versions for each vulnerability type.

Additionally, some industry companies and institutions
developed vulnerable apps by manually injecting vulnerabilities.
From this side, we take MSTG app [23] and PIVAA app [24]
into account, where MSTG is maintained by OWASP and
the latter one is developed by an industry company named
High-Tech Bridge [60]. The MSTG serves as a comprehensive
resource for mobile app security testing, providing valuable
insights into identifying and addressing potential vulnerabilities.
Meanwhile, the PIVAA app showcases real-world security
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issues and serves as an educational tool to enhance app
developers’ understanding of secure coding practices.

2) CVE-based Benchmark: To create a verified real-world
benchmark containing vulnerabilities caused by Android app
developers, we chose the CVE database [61] as the source,
which maintains an open list of known real-world vulnerabilities
found in specific software products. ① Initially, we filtered the
CVE database for entries containing the keyword “Android”
as of 2023-09-12, which yielded 8,451 vulnerabilities. ② In
the remaining CVE entries, we found that some vulnerabilities
lie in C/C++ files which are beyond our research scope. We
thus filtered out 2,042 such CVE entries. ③ To maintain
the benchmark’s focus on Android applications, we excluded
vulnerabilities tied to multiple platforms (e.g., Windows), An-
droid underlying components (e.g., Android media framework),
generic Android tools (e.g., Jadx [62]) and so on. Consequently,
we filtered out 4,029 CVE entries. ④ Since we focus on
developer-related issues within Android apps, we also excluded
277 CVEs only related to the browser kernels, as well as
those marked as controversial, disputed, or unspecified, such
as CVE-2021-43512 [63]. ⑤ After excluding cross-language
vulnerabilities (such as out-of-bound errors) that do not arise
from Android development defects, 2,079 Android-specific
CVE entries remained. ⑥ Finally, as we aim to gather as many
vulnerabilities as possible about the specified app and version,
we filtered out 46 CVE entries that did not specify the version
information, while 2,033 CVE entries remained.

To construct a comprehensive benchmark aligned with the
supported vulnerabilities across 11 tools, covering diverse
vulnerability types for a thorough evaluation of Android SAST
tools, we further refined 2,033 entries. Based on the taxonomy
and the unique vulnerability types supported by each tool, we
labeled the corresponding vulnerability types for these CVEs
based on their descriptions and supplementary information. To
avoid potential bias in the labeling process, detailed information
on each CVE was rigorously reviewed and independently
labeled by three co-authors. In case of disagreement, the final
decision was made by majority voting. In total, we assigned
2,050 labels to 2,033 CVEs since certain CVEs include up to
two types. Of these, 1,722 labels correspond to types supported
by selected tools, while 328 labels correspond to types not
supported by any selected tool, thus outside the study’s scope.

Regarding the 1,722 labels1 in our research scope, we
attempted to download all available vulnerable APKs as
described in their respective CVE entries. Specifically, we have
spent substantial time and effort searching in APKPure [64],
APKMonk [65], Google Play [66], and other app markets, as
well as the AndroZoo database [67]. Finally, we found available
APKs corresponding to 1,316 instances. It is noteworthy
that there is a long-tail distribution [68] in vulnerability
types, identifying 1,143 instances just involving 3 specified
vulnerability types.2 Moreover, we could not feasibly scan all
instances due to resource constraints. Focusing on the remaining
173 instances, we noted a maximum of 30 instances per single

1In this paper, the term “label” denotes “vulnerability instance”.
2The types are respectively “Use Invalid Server Verification”, “Use Invalid

Hostname Verification”, “Use Allow All Hostname Verification”.

type. Therefore, we opted to randomly select 30 instances from
each of these three types to be included in the CVE benchmark
for effectiveness evaluation. Subsequently, for these three types,
we incrementally added 10 instances to each type until they
all reached 60, covering four different states. We continuously
calculated the Recall value for all tools in these four states on
the CVE benchmark and observed that across the four states,
the sample variance of effectiveness3 for each tool on the CVE
benchmark was under 0.1%. Based on this finding, we deduced
that including all 1,143 instances versus including 90 samples
(30 per type) would have a negligible effect on the final results.

Therefore, we chose 30 samples per type, resulting in the
CVE benchmark including 250 CVEs encompassing 229 APKs,
262 vulnerability instances that covered 34 vulnerability types
named CVE-based benchmark. All labeling data, detailed
description of APK collection, Recall of four calculations, and
the CVE-based benchmark are released on GitHub [25] and
Zenodo [69].

III. STUDY OF THE TOOL DETECTION CAPABILITY

With the aid of the ability of VulsTotal, our study addresses
the following research questions to evaluate the detection
capability of the 11 selected tools comprehensively.
• RQ1: (Vulnerability type coverage) Are these SAST

tools capable of covering the unified vulnerability types
that are supported by VulsTotal? What is the coverage
of vulnerability types in the used benchmarks?

• RQ2: (Vulnerability type consistency) Is the Android
vulnerability landscape documented in CVE consistent
with the coverage provided by the selected SAST tools?
What about GHERA and MSTG&PIVAA?

• RQ3: (Detection effectiveness) How effective are these
SAST tools for vulnerability detection on different
benchmarks? How do these tools perform in terms of
the same vulnerability types?

• RQ4: (Time performance) What are the different
statuses of time performance for these SAST tools?

A. RQ1: Vulnerability type coverage
1) Setup: The range of vulnerability types a SAST tool can

detect serves as a significant measure of its overall performance.
To this end, we aim to explore the vulnerability type coverage
of each tool on the unified taxonomy and the three benchmarks
collected in § II-C. To achieve it, we further categorize the
vulnerability types based on the proposed taxonomy into three
groups: ① Overlapped types: vulnerability types supported
by multi-tools, ② Unique types: vulnerability types supported
only by a single tool, and ③ Unsupported types: unsupported
vulnerability types by all tools.

2) Result: As depicted in Table III, we included the number
of both overlapped and unique vulnerability types supported
by each tool. Further, types related to code-quality issues only
rather than vulnerabilities, and thus out of our research scope,
are also tracked and represented as “# Out of scope”. For
example, the “MANIFEST GCM” supported by AndroBugs

3We quantified it by using B Recall, which is defined in Equation (1).
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(a) GHERA benchmark.
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(b) MSTG&PIVAA benchmark.
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(c) CVE-based benchmark.

Fig. 3. Vulnerability type coverage of Android SAST tools in different benchmarks.
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Fig. 4. Vulnerability types supported by VulsTotal (in pink) and each
benchmark (in blue). “Unique”: supported by one tool only.

indicates that if the app’s “minSdkVersion” is less than 9, then
the app cannot use Google Cloud Messaging (GCM). This is
a compatibility issue [70] rather than a security vulnerability,
so it falls outside our research scope. Based on it, we found
that these tools typically lack comprehensive coverage of the
overlapped vulnerability types in VulsTotal. Indeed, coverage
tends to vary significantly among different tools. Notably,
APKHunt boasts the highest coverage at 67% (45/67), with
AUSERA coming in second at coverage of 60% (40/67),
whereas JAADAS lags with the lowest coverage, only 22%
(15/67). Refer to Table II, newer tools like APKHunt typically
exhibit better coverage than older tools like JAADAS. This may
be because newer tools can cover the vulnerability types that are
constantly being newly discovered. However, we emphasize that
the relationship between tool age and coverage does not vary
linearly. Moreover, we discovered that there are certain types
that most tools fail to support (only detected by two selected
tools), which are highlighted in Table III. For instance, within
the “Insecure Network Config Risks” category, no more than
three tools support 45% (10/22) of the types. This emphasizes
the need for tool developers to focus on detecting these
frequently overlooked types to enhance the comprehensiveness
of their type coverage. Furthermore, we noticed a significant
overlap in types supported by different tools, suggesting a
shared understanding among developers about the significance
and universality of certain types. Specifically, nearly all tools
support detecting vulnerability types in AndroidManifest.xml,
like “Manifest Backup/Debug Issue” (excluding SPECK) and
“Exported Not Protected Components” (excluding JAADAS).

As displayed in Figure 4, the alignment between the
vulnerability types injected in the existing three benchmarks and
the overlapped types in taxonomy is not as high as anticipated.
The consistency percentages against GHERA, MSTG&PIVAA,
and CVE-based are 35.82%, 35.82%, and 46.27%, respectively.
Further, we recorded the number of overlapped and unique

types covered by each tool across the three benchmarks
(refer to Figure 3). Remarkably, no tool manages to cover all
vulnerability types in three benchmarks. We further found that
APKHunt achieves the highest coverage on all three benchmarks
meanwhile, with 39% on GHERA, 50% on MSTG&PIVAA,
and 88% on CVE-based respectively. Further, AUSERA also
attained the second-highest coverage across three benchmarks,
with 29% on GHERA, 43% on MSTG&PIVAA, and 71%
on CVE-based. However, JAADAS simultaneously achieved
the lowest coverage across three benchmarks, with 12% on
GHERA, 14% on MSTG&PIVAA, and 26% on CVE-based.
Similarly, this demonstrates the suboptimal coverage of the
selected tools across the three benchmarks.

Additionally, through Figure 5, there are still many unsup-
ported types by all tools (45.10%, 23/51 on GHERA and
43.18%, 19/44, on MSTG&PIVAA, the detailed list is also
available on GitHub [25]). The results on synthetic benchmarks
show that there is a significant gap between the supported types
of these SAST tools and the types injected in these benchmarks.
This inconsistency highlights the need for a reliable benchmark
to align the coverage of types supported by existing Android
SAST tools. However, the vulnerability types in the CVE-based
benchmark are a subset of the types supported by these SAST
tools, as the latter was the baseline for the former’s construction.
This means that all types in CVE-based are supported by tools,
so the corresponding number in Figure 5 is 0.

Answer to RQ1: ① All evaluated tools exhibit significant
gaps in their support for 67 unified vulnerability types. No
single tool offers comprehensive support; the highest and
lowest coverage rates are 67% and 22%, respectively. This
highlights the imperative for a comprehensive vulnerability
scan of an Android app, necessitating the collaborative use
of multiple SAST tools. ② A disparity exists between the
vulnerability types supported by these tools and those present
in two synthetic benchmarks, with an inconsistency rate of
45.1%(GHERA) and 43.18%(MSTG&PIVAA).

B. RQ2: Vulnerability type consistency
1) Setup: Firstly, since Android-related CVEs provide in-

sights into real-world vulnerabilities, we try to explore the
consistency between the vulnerability types included in Android-
specific CVEs and those supported by all 11 tools. Based on
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Fig. 5. Vulnerability types injected in each benchmark (in blue) while
unsupported by all the 11 tools (in pink).

the final-filtered 2,050 labels from § II-C2, we incorporated
them and 46 CVEs without specified app version (involving
47 labels) excluded in § II-C2 into discussion regarding their
reflection of vulnerability type distribution in CVEs. Based
on their corresponded vulnerability types, we categorized the
labels into two groups: 1) Supported types, included in the
set of vulnerability types supported by the 11 tools, and 2)
Unsupported types. Moreover, refer to § III-A, we discovered a
huge gap between the supported types and those available in the
synthetic benchmarks. We further analyzed this inconsistency
here. For types injected in synthetic benchmarks, we also
categorized them into two groups above. Finally, since the
OWASP Mobile Top 10 [57] (OWASP in short) represents
the top 10 prominent security risks in mobile applications, we
further analyzed the consistency between the tool-supported
types and those outlined in OWASP. Subsequently, we will
analyze type consistency from these three perspectives.

2) Result: Android-specified CVE vulnerability type
consistency. We counted the number of vulnerability types,
labels, and the corresponding CVEs in these two categories and
listed them in Table IV. There are 36 supported types with 1,741
labels and 34 unsupported types with 356 labels. To simplify
the presentation, we ranked the types in descending order
based on the number of labels in each type. Figure 6 shows
the top 10 types and their label counts for both categories.
We observed that among the supported types, “Use Invalid
Server/Hostname Verification”4 has the highest label number
at 1,449, significantly surpassing other types. The second
most prevalent type is “Hardcoded Sensitive Data Exposure”,
totaling 59 labels. Further, among the unsupported types, the
most frequent is “Inadequate Authentication and Authorization”
totaling 39, followed by “Path Traversal” with 27 labels.

We further classified these types based on whether they could
be detected using syntax-based or semantic-based analysis
mentioned in § II-A and found that 79% (27/34) of the
unsupported types were challenging to detect without a deep
understanding of the application’s scenario logic. In other
words, these vulnerability types do exceed the ability of SAST
tools to abstract and track complex vulnerability patterns to
a certain extent. For example, “Lack of Input Validation”
requires tracking control and data flow to identify deficiencies in
validation branching decisions, as well as conducting complex
checks such as length validation and type checking according to
the specific application contexts to verify that the code is robust,
well-placed, and triggered correctly in application contexts.
Conversely, the selected tools consistently demonstrated the

4This category contains three vulnerability types which are “Use Invalid
Server Verification”, “Use Invalid Hostname Verification” and “Use Allow All
Hostname Verification” respectively.

TABLE IV. THE # OF THE VULNERABILITY TYPES, LABELS, AND CVES
IN TWO CATEGORIES.

# Vulnerability Type # Vulnerability Label # CVE

Supported Types 36 1,741 1,723
Unsupported Types 34 356 356

TABLE V. MAPPING OF OWASP MOBILE TOP 10 2024 TO CATEGORIES
IN UNIFIED TAXONOMY.

OWASP Mobile Top 10 2024 Categories in unified taxonomy
M1: Improper Credential Usage

Sensitive Data Exposure RisksM6: Inadequate Privacy Controls
M9: Insecure Data Storage

M5: Insecure Communication Insecure Network Config Risk

M10: Insufficient Cryptography Insufficient Encryption Risks

M4: Insufficient Input/Output Validation
Insecure Code Execution Risks

M8: Security Misconfiguration
Security Misconfig Risks

M7: Insufficient Binary Protections None

M2: Inadequate Supply Chain Security None

M3: Insecure Authentication/Authorization None

ability to identify vulnerability types without requiring deeper
contextual understanding, such as detecting insecure encryption
algorithms like “AES/ECB” mode, by recognizing known
insecure sensitive API usage patterns.

Synthetic benchmarks vulnerability type consistency.
Similarly, among the 23 vulnerability types unsupported by all
11 tools in GHERA from Figure 5, there are 65% (15/23) types
that posed challenges for detection using the common methods
employed by the selected SAST tools, which include both
syntax-based or semantic-based analysis. Notably, vulnerability
types injected in MSTG&PIVAA are detectable just by syntax-
based pattern matching. These observations underscore the
limitations of existing SAST tools that depend solely on
identifying sensitive API usage through regular-expression-
based or string-based pattern matching. It underscores the
necessity for more precise pattern extracting tailored to specific
types, such as privilege escalation, along with the deeper
adoption of advanced detection techniques such as data and
control flow analysis. These enhancements are particularly
crucial for accurately identifying complex vulnerabilities that
involve scenario-specific logic.

OWASP Mobile Top 10 vulnerability type consistency.
Given the OWASP encompassing specific vulnerability types,
we adopted its ten overarching categories as our baseline for
comparison. Refer to Table III, our taxonomy consolidates 67
unified types into five major categories, and we mapped these
categories to OWASP categories, discovering that each category
can be mapped to certain categories in OWASP, indicating the
taxonomy’s practical significance with the high consistency
with OWASP. Specifically, as displayed in Table V, excluding
M2, M3, and M7, all other OWASP-defined risks can match
the categories in the taxonomy. Similarly, each unique type
supported by a single tool also falls into one of the OWASP
categories. Notably, the lack of support for M3 coincides
with the unsupported types (i.e., “Inadequate Authentication
and Authorization”) in CVEs, as shown in Figure 6. This
not only highlights the consistency of the distribution of
vulnerability types in the real world but also emphasizes that
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these unsupported types should be a key focus for future
tool development and optimization given their prevalence. The
detailed mapping of types (including those within the taxonomy
and those uniquely supported by tools) to their corresponding
OWASP category is available on our GitHub [25].

Answer to RQ2: ① We found significant gaps between the
vulnerability types included in Android-specific CVEs, those
in synthetic benchmarks, and the types supported by the
tools. Specifically, none of the selected tools support 34 types
in Android-specific CVEs, 19 types in MSTG&PIVAA, and
23 types in GHERA ② Further analysis highlights that the
unsupported types are primarily those challenging for most
SAST tools to cover. Specifically, 79% of 34 unsupported
types in Android-specific CVEs and 65% of 23 unsupported
vulnerability types in GHERA could not be detected using
pattern matching only.

C. RQ3: Detection effectiveness
1) Setup: The CVE-based benchmark exhibits an uneven

distribution of vulnerability instances. For instance, there are
24 instances under “Using HTTP Issue” but only one instance
under “Weak CBC Cipher Mode”. To ensure a comprehensive
evaluation of the selected tools, we further constructed another
uniform benchmark named CVE-U by applying an under-
sampling technique [71] to achieve a more balanced distribution
of vulnerability instances. Specifically, we sampled a maximum
of three instances for each type of vulnerability. This threshold
was chosen to balance the distribution, considering the prevalent
types and the limited availability of application resources. Our
analysis then compares the effectiveness of the tools using both
the original, imbalanced CVE-based benchmark and the newly
balanced CVE-U benchmark.

To investigate the effectiveness of selected tools for vulnera-
bility detection on these 4 different benchmarks, we leverage
the platform VulsTotal to analyze all the instances. Given the
overlap between the tools in [7] and our study, we set a 15-
minute timeout pre scan based on its time performance finding.
Our results in Figure 9 showed that all tools had a maximum
average scan time below 15 minutes, confirming the validity
of this timeout.

All experiments are performed on an 8-core Linux machine
with 32 GB RAM (used consistently throughout this study.) We
will discuss the effectiveness of 11 tools based on Precision,

Recall, False Positive Rate (FPR), and F1-score. Given that
ground truth is only available for known vulnerabilities in
benchmarks i.e., CVE-based, CVE-U, and MSTG&PIVAA,
it is important to acknowledge that these sources cannot
guarantee the absence of other vulnerabilities. Therefore,
following the common practices [72], [73], we only calculate
the customizable Recall named B Recall (Benchmark Recall)
for them to reflect whether the selected tools could find known
and documented vulnerabilities. The calculation method of
B Recall is as follows.

B Recall =
# Correctly Identified Vulns

# All Known Vulns in the Benchmark
(1)

To deeply understand the selected tools’ effectiveness in
unified vulnerability types, we further explore their detection
capabilities on specific types. As detailed in Figure 8, we
aggregated instances from all benchmarks for each vulnerability
type, focusing on those with at least five instances to ensure a
meaningful evaluation. This approach allowed us to assess the
B Recall of tools in detecting these selected types, providing a
granular view of individual tool performance and maintaining
credibility by avoiding types with fewer instances.

2) Result: Figure 7 shows 11 tools exhibit broad abilities in
vulnerability detection, yet many underperform expectations.

a) Effectiveness on the GHERA benchmark: As shown
in Figure 7a, we marked the F1-score for all tools on GHERA
along with the number of supported vulnerability cases. We
found tools show varied effectiveness on GHERA to balance
Precision and Recall. For example, AUSERA’s highest F1-score
of 82.6%, bolstered by a 90% Recall, shows strong true positive
(TP) identification. Despite 76% Precision, indicating some
false positives (FP) with a 28.6% FPR, it balances Precision
and Recall well, highlighting its effective detection. However,
certain tools have struggled to balance Recall and Precision,
leading to a poor F1-score. For instance, QARK only achieved
a Recall of 30.8%, indicating missing many TPs and leading
to an F1-score of just 42.1%. APKHunt got a Recall of 85.7%,
covering the majority of TP. But it obtained a Precision at a
mere 55.8%, suggesting a high rate of 67.9% FPR. Similarly,
SUPER shows an imbalance with a Precision of 66.7% and a
Recall of just 33.3%, leading to an F1-score of only 44.4%. The
remaining tools achieve a more balanced effectiveness, leading
to medium-level results. For example, AndroBugs attained
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(a) GHERA.
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(b) MSTG&PIVAA.
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(d) CVE-U.

Fig. 7. Effectiveness of Android SAST tools in VulsTotal on different benchmarks. FPR refers to False Positive Rate. Since the supported vulnerability types of
these SAST tools on these benchmarks are various, we highlight that the metrics shown in Figure 7 cannot be used for comparison of relative abilities across
different tools, but their absolute values illustrate the detection capability on specific types of different benchmarks.

a 75.9% F1-score (78.6% Precision and 73.3% Recall) and
JAADAS exhibited a 70.6% F1-score (75% Precision and 66.7%
Recall). In general, most tools show much underreporting on
GHERA, resulting in an F1-score of no more than 85%.

b) Effectiveness on the MSTG&PIVAA benchmark: As
shown in Figure 7b, JAADAS, DroidStatx, and Trueseeing
achieved 100% B Recall, indicating these tools have effective
detection capabilities for the types supported by this benchmark.
Additionally, all tools, except Marvin and QARK, achieved
more than 75% B Recall, underscoring their effectiveness.
This can be attributed to the vulnerabilities injected in this
benchmark exhibiting simpler patterns compared to GHERA
for the same type. Furthermore, compared to other tools,
Marvin and QARK showed lower B Recall of 35.7% and
33.3% respectively, indicating potential limitations in their
detection methods when identifying types of MSTG&PIVAA.
Overall, most tools validated the utility of simple vulnerability
patterns on this benchmark.

c) Effectiveness on the CVE benchmarks: Generally,
there is no significant difference in the performance of these
tools between synthetic and real-world benchmarks refer
to Figure 7. For example, AUSERA achieved a B Recall of
89.7% on CVE-based and 90.5% on GHERA. This can be
attributed to the fact that these tools rely heavily on pattern
matching, detecting vulnerabilities based on the usage of
specific sensitive APIs that are easy to find. This approach
does not involve complex contextual analysis or cross-function
examination. As both the selected synthetic and real-world
benchmarks mainly consist of vulnerability types that are
identified by the presence of certain patterns in the usage
of sensitive APIs, this consistency makes the effectiveness of
these benchmarks not much different.

Refer to Figures 7c and 7d, The tools exhibit a consis-
tent performance trend across both CVE-based and CVE-U
benchmarks, with top-performing tools showing high B Recall
in both benchmarks, while underperforming tools display low
B Recall across them. SPECK achieved high B Recall at 91.8%
in CVE-based and 93.1% in CVE-U. APKHunt and DroidStatx
followed closely with B Recall at 94.9% and 92.6% in CVE-
based and 87.9% and 86.2% in CVE-U, respectively. Notably,
SUPER had the lowest B Recall both at 52.3% in CVE-based
and 38.9% in CVE-U, with QARK performing slightly better
at 68.1% in CVE-based and 40% in CVE-U. Due to space
limitations, we present only the top 5 CVE-based vulnerability
types with the most instances in Table VI. Full instance numbers

TABLE VI. TOP FIVE VULNERABILITY TYPES WITH THE MOST
INSTANCES IN CVE-BASED AND CVE-U.

Vulnerability Types # Instance in CVE-based

Hardcoded Sensitive Data Exposure 33
Use Invalid Server Verification 32
Use Invalid Hostname Verification 32
Use Allow All Hostname Verification 30
Using HTTP Issue 24

per type in CVE-based are available in GitHub [25]. Comparing
the B Recall of CVE-based with CVE-U, we found that all tools
except SPECK exhibited a marked improvement. As shown
in Figure 8, Figure 7c and Table VI, we observed that types
that frequently occur in CVE-based and are effectively detected
by tools contribute to the overall improved performance across
CVE-based. For example, “Hardcoded Sensitive Data Exposure”
has the most instances (33), as referred to Table VI. Across
the four supported tools in Figure 8a and Figure 7c, those
with stronger detection capabilities in this type perform better
in CVE-based, while Marvin lags due to weaker detection.
Since CVE-based reflects real-world vulnerability distribution
to some extent, high detection performance on these frequent
types implies the tool’s effectiveness in real-world applications,
suggesting that tools should focus more on detecting these
frequent vulnerability types.

d) Effectiveness on single vulnerability types: Note that
this discussion is based solely on tools’ B Recall, as their
Precision was unable to be calculated due to the nature of
our benchmarks. As shown in Figure 8, most tools generally
perform well in detecting various supported types, especially
for “Logging Data Exposure”, where all tools score over
90% B Recall. However, there are notable variations in their
performance regarding specific types. For example, SUPER
shows poor performance at 25% B Recall for “SQL Injection”
while the other four tools achieved a B Recall of at least 75%.

We further analyze tools’ performance against specific types
ordered by instance frequency, for a granular insight. For
“Hardcoded Sensitive Data Exposure” in Figure 8a, MobSF
excels at B Recall of 93.9%, closely followed by Trueseeing
and APKHunt in B Recall of 93.1% and 84.8%. MobSF’s
superiority arises from its ability to search for hardcoded
sensitive data like “passwd” in both source code and string pools
within “string.xml” files. Trueseeing achieves high efficacy
through database storage for control and data flow analysis to
identify sensitive values based on characteristics like entropy
and length. However, Marvin performs poorly in this type as
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(a) Hardcoded Sensitive Data Expo-
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(b) Use Invalid Hostname Verifica-
tion.
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(c) Use Invalid Server Verification.
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(d) Use Allow All Hostname Verifi-
cation.
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(e) Using HTTP Issue.
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(f) Exported Not Protected Compo-
nents.
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(g) Logging Data Exposure.
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(h) SQL Injection.
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(i) External/Internal Data Exposure.
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(j) Misuse Implicit Intent Issue.
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(k) Webview Local File Access.
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(l) Webview JavaScript Execution.

Fig. 8. Effectiveness of Android SAST tools in detecting specific vulnerability types that appear over five times across the three benchmarks.

B Recall of 40%, primarily due to its narrow focus on specific
scenarios of sensitive data, such as passwords for services like
Twitter and Apache credentials, rather than offering broader
coverage. Regarding “Use Invalid Server Verification” depicted
in Figure 8c, APKHunt, AndroBugs, and JADDAS showed
high B Recall (100%, 96.9%, 93.3% respectively). APKHunt
achieved such performance by relying on rough regular expres-
sion matching for decompiled source text, whereas JAADAS
and AndroBugs achieved such performance by applying a
combination of data and control flow analysis built upon
bytecode parsing. QARK’s B Recall is only 81.3%, largely
due to incomplete decompilation of source code, exemplified
by numerous empty or meaningless variables in the decompiled
output of a real APK.5 Marvin and DroidStatx missed the empty
checkServerTrusted method in X509TrustManager
due to reliance on bytecode analysis with strict adherence to
the pattern “public checkServerTrusted(...)” and
oversight of the “public final” modifier, resulting in the
low performance as 90.3% and 83.9% respectively.

Regarding “Using HTTP Issue” in Figure 8e, all tools except
AndroBugs demonstrate high B Recall (100%). AndroBugs po-
tentially lacks tailored detection for constructing HTTP connec-
tions via string concatenation with HttpURLConnection,
particularly when URLs are created directly with http://. Instead,

5350apkPure.apk in CVE-based.

it focuses more on instances explicitly utilizing HttpHost
classes for HTTP connection establishment, resulting in the sub-
optimal performance of 91.7% B Recall. Figure 8f displays that
except for SUPER, all supported tools achieve high performance
(over 95% B Recall) in detecting “Exported not Protected Com-
ponents” due to the straightforward detection logic, employing
pattern matching for explicit or implicit exported components
in the “AndroidManifest.xml”. With 33.3% B Recall, SUPER’s
inefficiency stems from extensive content loss during manifest
file decompilation rather than flawed detection rules. SPECK
misses a few cases because it focuses on broadcast and service
detections, lacking activity checks, resulting B Recall of 95%.
In Figure 8g, MobSF, APKHunt, AUSERA, and Trueseeing
effectively detect “Logging Data Exposure” as all achieve
100% B Recall, the strategies they employ to achieve low false
negative rates differ. While APKHunt and MobSF employ more
loose rules by identifying sensitive API calls, like log.e()
in decompiled source code, without validating data sensitivity
or tracing its origin back to UI input. In contrast, AUSERA
and Trueseeing use data flow analysis to confirm sensitive
information, with AUSERA improving precision by tagging
specific sensitive identifiers. As for SUPER, which achieved
93.3%, it uses regular expression matching on decompiled code
to search sensitive APIs involved in logging, but its reliance
on hardcoded rulesets may miss variable-type sensitive data. In
“SQL Injection” refer to Figure 8h, limited performance (75%)
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of SPECK is due to its focus on ContentProvider SQL injection,
omitting SQLite and other contexts. SUPER underperforms due
to narrow pattern matching without contextual consideration
leading to many FNs. As shown in Listing 2, to detect SQL
injection, SUPER uses regex displayed at Line 2 to match.
However, as shown in Lines 3-16 from Listing 2,6 the query
string in vulnerable code is constructed by concatenating user
input and passing it to the parameter query. But SUPER
just detects operations involving string concatenation, causing
FNs. As displayed in Figure 8k, QARK and Marvin miss many
cases related to “WebView Local File Access”, resulting in a
B Recall of 28.6% and 22.2% respectively. Although Marvin
conducts fine-grained checks by validating sensitive API-
involved exported activities and analyzing exposure surfaces.
Its overly strict rule implementation requires browsing the file
scheme in the export activity, leading to severe false negatives.
Due to space constraints, we provide detailed analysis for the
remaining types on GitHub [25].

e) Technical reasons underlying their effectiveness:
To ensure accuracy and reliability, two authors independently
conducted the analysis, mediated disagreements with a third
author, and the entire team reviewed the final results for con-
sistency. As mentioned in § II-A, all selected tools use pattern
matching as core techniques. Therefore, their effectiveness
relies heavily on hard-coded patterns, making it hard to capture
vulnerable behaviors precisely. Specifically, coarse-grained
pattern definitions boost B Recall but invite false positives (FP);
overly fine precision increases the risk of false negatives (FN).
An abundance of patterns for the same types reduces misses but
escalates FPs, while overly narrow definitions lead to substantial
FNs. Applied to the selected tools, APKHunt excels in four
benchmarks by using simple regular-expression matching on
decompiled source code, with coarse-grained and abundant
patterns leading to high B Recall but also many FPs in GHERA.
For example, when detecting “WebView JavaScript Execution”,
it tries to match the presence of setJavaScriptEnabled
API and the string WebView, which is not enough since the
vulnerability is only triggered if the API parameter is set to
true. Furthermore, the poor effectiveness of QARK in all four
benchmarks is influenced by its limited and narrow-defined
pattern matching. Moreover, the overly fine-grained pattern
defined leads to low B Recall, evidenced by Marvin for the
type of “WebView Local File Access” mentioned earlier.

Well-defined detection patterns are equally critical, evi-
denced by the varying detection logics employed by different
tools for the same vulnerability types analyzed in the above
paragraph. For example, regarding Marvin’s lower B Recall
(35.7%) on MSTG&PIVAA, we analyzed its false negative
cases and discovered that Marvin employed an ineffective
method to detect certain types. Specifically, when detecting
the “Manifest Backup Issue”, Marvin attempted to extract
the “allowBackup” element’s value in AndroidManifest.xml. It
flags the vulnerability if the value was set to true. However,
in practice, it mistakenly used android:allowBackup,
consistently extracting None as the value, emphasizing the
importance of testing. We displayed the original detection

6The vulnerable code is from “SQLite-execSQL-Lean-benign” in GHERA.
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Fig. 9. The scanning time of each tool across different APK size intervals.

1 // The vulnerable source code
2 private void openFileOutputWorldWritable(String filename)

throws Exception {
3 getContext ().openFileOutput(filename , Context.

MODE WORLD WRITEABLE);}
4 // The vulnerable decompiled source code
5 private void openFileOutputWorldWritable(String filename)

throws Exception {
6 getContext ().openFileOutput(filename , 2);}

Listing 1. The code example of “Mode World Storage Writable Issue”.

code alongside our corresponding fixed code in Lines 2-3
and Lines 6-7 from Listing 3 respectively. Also, we have
identified a limitation among source-code analysis tools. Taking
APKHunt as an example, it attempts to detect the “Mode
World Storage Writable Issue” by directly matching the string
MODE_WORLD_WRITEABLE. This approach often results in a
significant number of FNs as it relies solely on string matching
without considering the subtleties of constant value resolution in
decompilation. As shown in the decompiled vulnerable source
code in Listing 1, the string MODE_WORLD_WRITEABLE in
the original Android source code (Lines 2-4), representing
the permission flag value “2”, is decompiled to the numeric
parameter “2” in Lines 6-8. This disparity underscores a key
challenge: relying solely on string matching without accounting
for the nuances of constant value resolution diminishes the
effectiveness of source code analysis in SAST tools. Pattern
matching is also constrained by its inherent limits, as it
locks onto fixed vulnerability patterns, disregarding contextual
consideration. For instance, as previously discussed in § III-C2d,
SUPER handles “SQL Injection” without context consideration.

Moreover, the dependency of third-party reverse or parsing
tools also impacts the overall performance of the selected tools.
For instance, QARK struggles with parsing certain Java files due
to its reliance on the underperforming library plyj [74], a Java
syntax analysis library. This limitation is evident when QARK
fails to parse the “NewPassword.java” file,7 leading to a false
negative (FN), especially notable in failing to detect insecure
API usages, like Cipher.getInstance(‘‘AES/ECB’’).
Moreover, Marvin incurred many FNs in MSTG&PIVAA (6/9)
due to triggered parsing errors within the SAAF framework.

Based on the above in-depth analysis of cases, we have
summarized 5 reasons for the tools’ suboptimal effectiveness.
① Granularity issues in pattern matching. While nearly
all 11 tools use pattern matching to detect vulnerabilities,

7A part of GHERA’s BlockCipher-ECB-InformationExposure-Lean-benign.
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1 // The regular expression used in SUPER:
2 // (?: rawQuery | execSQL)\\(.*\"\\s*\\+\\s*.*\\)
3 protected void query(db) {
4 String query = "UPDATE "
5 + MyDatabase.Table1.TABLE NAME
6 + " SET " + MyDatabase.Table1.COLUMN NAME VALUE
7 + " = \’" + value + "\’"
8 + " WHERE " + MyDatabase.Table1.COLUMN NAME KEY
9 + " = \’" + key + "\’";

10 try {
11 db.execSQL(query);
12 } catch (Exception e) {
13 Log.d("E", e.toString ());
14 } finally {
15 currentSnapshotOfTable ();
16 }}

Listing 2. The vulnerable code and the detection logic of “SQL Injection”
within SUPER.

1 # The original detection code
2 def check backup(self):
3 return self.apk.get element("application", "android:

allowBackup") == ’true’
4 # The fixed detection code
5 def check backup(self):
6 return self.apk.get element("application", "allowBackup"

) == ’true’

Listing 3. The detection code of “Manifest Backup Issue” within Marvin.

variations in granularity were observed during the analysis of
tool metadata. We conducted an in-depth examination of each
tool’s vulnerability detection logic at the code level, combining
the aforementioned analysis on single vulnerability types. This
involves analyzing the underlying detection approaches for
every vulnerability listed in VulsTotal across different tools.
Based on our in-depth analysis, we find that 62.68% (42/67)
of the unified vulnerability types exhibit consistent granularity
with the same logic and matching of sensitive APIs across tools
for the same type. We paid more attention to the fine-grained
granularity of rule implementations across these tools and
concluded the main cases of different granularity. 1) Data flow-
sensitive vulnerabilities. For most data disclosure types (5.97%,
4/67) like “Logging Data Exposure”, As mentioned earlier,
differences in tracking sensitive data and defining sensitive
information lead to varying performance outcomes. Most tools,
such as SUPER, focus primarily on matching sensitive APIs,
employing relatively lenient criteria that can lead to higher
false positives. In a real-world APK sample, SUPER flagged
597 instances of log data exposure, whereas APKHunt reported
1,210 instances, thus increasing developers’ review burden.
2) Vulnerabilities with preconditions. For vulnerabilities that
only trigger with certain preconditions, we find that different
tools have different detection granularity. For example, the
sensitive API setAllowFileAccess(‘true’) in “Web-
view Local File Access” only triggers for min SDK version
below 17 while only AUSERA and QARK conduct API
matching with further validation of the min SDK version.
Five vulnerability types having the constraints of preconditions
are in this category, accounting for 7.46% (5/67). 3) Omitted
detection of certain sensitive APIs. For vulnerability types
with multiple sensitive APIs (23.88%, 16/67), differences arise
when tools omit certain sensitive APIs in the analysis. For
example, most tools only check for AES encryption misuse via
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TABLE VII. TIME PERFORMANCE COMPARISON OF DIFFERENT TOOLS.
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Cipher.getInstance("AES/ECB"), while ignoring the
implementation of Cipher.getInstance ("AES") also
uses the parameters “AES/ECB/PKCS5padding”. Among the 3
causes we discussed, the first two as rough detection granularity
tend to yield excessive false positive results, highlighting the
need for well-tuned granularity, avoiding extremes of coarseness
and fineness. The last may suffer from numerous false negatives
due to disparities in sensitive API coverage which calls for
reasonable coverage. ② Detection logic issues. As shown in the
case of Marvin detecting backup issues, inconsistencies arise
between the claimed detection capabilities of tools and their
actual performance, often arising from issues in their detection
logic. ③ A lack of code context. Concerning SQL Injection,
despite source code analysis tools capturing high-level language
structures, their detection logic often relies on pattern matching
without contextual consideration, leading to instances of false
negatives. ④ Issues with integrated tool libraries. Tools such as
QARK relies on plyj, and Marvin relies on SAAF, any problems
with the libraries they depend on can significantly impact their
performance as mentioned earlier. ⑤ Decompilation issues.
Decompilation tools cannot perfectly reconstruct source code,
leading to issues such as missing code snippets and parameter
variations. Just as discussed in § III-C2d, the decompilation
content omissions would lead to false negatives when using
QARK and SUPER.

Answer to RQ3: ① All evaluated tools exhibit suboptimal
effectiveness across four benchmarks. Specifically, QARK
achieved the lowest F1-score on GHERA at 42.1% while SU-
PER had the lowest B Recall on CVE-based at 38.8% and
on CVE-U at 38.2%. On MSTG&PIVAA, QARK obtained
the lowest B Recall of 33.3% ② Source code-based tools,
like QARK and SUPER tend to experience effectiveness
fluctuations affected by the quality of decompiled source
code. ③ Varying degrees of detection inconsistency among
tools can be found like Marvin can not detect “Manifest
Backup Issue” as its detection code bug. ④ The performance
of the tools on synthetic and real-world benchmarks in our
study did not differ significantly.

13



D. RQ4: Time performance

1) Setup: To investigate the tools’ time performance, we
employed all 305 sample apps from GHERA, MSTG&PIVAA,
and CVE-based benchmark to analyze detection time, running
each tool three times to avoid bias or unexpected errors,

2) Result: Table VII shows the average time taken by
each tool for scanning a single APK. We found that MobSF
required the longest scanning time (197.6s), followed by QARK
(191.7s) in the second longest position while APKHunt was
the third (172.6s). MobSF takes longer due to its extensive
detection scope. In addition to code analysis, it conducts further
examination including security analysis on binary files, such as
checking the NX bit status in ELF files. QARK takes a longer
time due to its uses of three decompilers in parallel. Since the
entire decompilation waits for the last one to finish, an increase
in the runtime of any single decompiler will extend the overall
scan time, thus slowing down the process. APKHunt exhibits
longer analysis time as it traverses each decompiled Java file
to perform detection for all supported vulnerability types as it
supports more types.

We observed that SUPER exhibits the shortest time and thus
the best time performance overall for its utilization of parallel
scanning, which significantly reduces the scan time. AndroBugs
took slightly longer than SUPER for its scans. The accelerated
scanning is achieved through AndroBugs’ modification of
Androguard, allowing based on bytecode analysis. DroidStatx
took only 21.7s per APK, attributed to its focus on analyzing
smali files derived from dex files, a less time-consuming process
than decompiling dex files into source code. The remaining tools
have a similar time cost ranging from 40s to 70s. Our findings
revealed that among the tools with average scanning times
below 100s, 75% (6/8) rely on bytecode-based analysis. This
implies that bytecode-based tools are faster as bytecode is a less
complex representation than source code, simplifying analysis.
By contrast, tools employing decompilation to source code face
substantial computational demands because the decompilation
process itself is highly time-consuming.

To better understand the time performance of different tools,
we further present the size of APKs in CVE-based and GHERA
in Figure 10 (the app size in MSTG&PIVAA is 5.9MB and
3.2MB respectively), and the variation in scanning time of
each tool across different APK size intervals in Figure 9.
Refer to Figure 10, the distribution of APK sizes within the
CVE-based spans a wide range, extending from 0.3 MB to
209.7 MB, with most (75%) beneath 27.9 MB and just a few
(9) surpassing 100 MB while the APK size in GHERA is
concentrated near 1MB. Detection time typically rises with
increasing APK size across most tools, as anticipated for larger
files. Notably, APKHunt experiences a significant increase in
detection time for APKs over 100MB, suggesting it takes longer
to analyze larger files.

During the tool scanning process, we identified cases in
which certain tools failed to obtain scanning results. Specifically,
out of the 305 APKs across three benchmarks (considering
GHERA includes both benign and secure APKs), the number
of failure cases for each tool is detailed in Table VII. Notably,
JAADAS exhibited a high number of failed scans, with 142

instances. Failure cases in JAADAS stem from analysis issues
within Soot, which it relies upon. When failures are due to
timeouts, the root cause lies in discernible pauses occurring
during the Soot analytical procedure. The failure cases of
SUPER were due to the unsuccessful DEX to JAR conversion
using Dex2Jar. In summary, tool failures stemmed from three
main reasons: ① Inherent flaws in the tools’ scanning logic,
which leads to unsuccessful scans. For instance, Marvin
attempted to convert a string to an integer without accounting for
the presence of the 0xa0 string. ② Unsuccessful decompilation
of APK, such as the flaw in QARK’s decompile function,
leading to scan terminations. ③ Failure during analysis. In this
case, bytecode analysis frameworks the SAST tools depend
on such as Soot encounter failures in analyzing, specifically
encountering exceptions during processing. Examples include
AUSERA and JAADAS.

Answer to RQ4: ① The bytecode-based tool (e.g.,
AndroBugs) scans faster than most tools that employ source
code analysis. ② The selection of decompilers significantly
influences the scanning speed of the tool. For instance,
QARK employs three different decompilers, which results
in an increased time cost (i.e., 175.4s) for its scanning
process. ③ These tools demonstrate varying degrees of scan
failures. Notably, JAADAS experienced 59 scan failures,
attributable to a bug within the Soot framework.

IV. DISCUSSION

A. Implications
1) Suggestions for SAST tool developers: To enhance Android

vulnerability detection capability, we propose the following
suggestions for SAST tool developers.
(1) Expand coverage for overlooked vulnerability types. As
discussed in § III-A, many tools neglect certain vulnerability
types. In comparison to our 67 unified vulnerability types, the
highest coverage is merely 67%. Beyond taxonomy overlaps,
our study found notable differences in the unique vulnerability
types supported by tools. APKHunt leads with 15 unique types,
while some tools have none. Hence, tool developers can use our
taxonomy and unique types list supported by each tool (shared
on GitHub [25]) as a baseline for expanding supported types
in their tools. Further, as detailed in § III-B, 79% of Android-
specific CVEs’ unsupported vulnerability types, and 65% of
23 types in GHERA are undetectable to rely solely on pattern
matching. This exposes a significant gap between the detection
capabilities of current SAST tools and the security needs of
applications. Therefore, to better identify vulnerability types,
developers should prioritize expanding detection capabilities for
overlooked yet common types. Exploring alternative detection
techniques beyond pattern matching is essential.
(2) Improve the effectiveness of vulnerability detection. In
§ III-C, we discussed five technical reasons underlying tool
effectiveness. Here are some suggestions for developers: ① Use
more detailed detection patterns to cover various vulnerability
scenarios and prevent false negatives, as highlighted in § III-C.
② For tools that rely on decompilation tools for source code
analysis, they should enhance their detection performance by
incorporating code context. While not a novel tip, there are
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still many tools that have not implemented it. ③ Ensure the
usability of integrated analysis frameworks, implement robust
exception handling, and regularly update tools to their latest
versions. For example, the analysis bugs in Soot or failed scan
caused by Dex2Jar (as mentioned both in § III-D). ④ Test and
verify the claimed vulnerability detection logic to align with
actual results and avoid discrepancies. For instance, despite
the simplicity of Marvin’s approach for detecting “Manifest
Backup Issues”, its simple bug resulted in misidentification.
(3) Evaluate tools on suitable benchmarks in consistency.
§III-C reveals discrepancies between the vulnerability types
covered by tools versus those represented in three benchmarks
while the highest coverage is 88% from APKHunt at CVE-
based. Developers need appropriate benchmarks to evaluate
tool performance. The open-source community also urges the
creation of benchmarks that cover a broader range of types.
(4) Optimize the integration of decompilers. As detailed
in § III-D, the decompilation time greatly affects time cost
because source-code analysis tools rely on decompiled source
code. Tool developers could evaluate the effectiveness and
necessity of decompilers in vulnerability detection, and consider
removing redundant or underperforming decompilers to reduce
scan times.

2) Suggestions for app developers: For better SAST tool
selection for vulnerability detection, we give suggestions for
app developers.
(1) Select SAST tools via specific app security requirements.
According to our analysis in § III-A, no single tool can
completely cover all the vulnerability types contained in
our proposed taxonomy, indicating the importance of SAST
tool selection with application-specific requirements. App
developers should select SAST tools aligned with their specific
requirements related to their focus on app features. For example,
when assessing apps involving sensitive data, AUSERA which
provides more attention to detection of data leakage issues
should be prioritized.
(2) Select SAST tools based on the need for time cost.
For high-time performance needs, choose lightweight bytecode
SAST tools like AndroBugs given their efficiency. In scenarios
where pursuing vulnerability detection rate of detection with
flexible time budgets, using multi-decompiler tools like QARK
accepts higher time costs for enhanced detection.

B. Threats to Validity
1) External Validity: An external threat involves using CVE

as our sole real-world vulnerability source. This limitation
potentially constrains our analysis’s comprehensiveness and
universality. However, our diverse, large in size, and sys-
tematically constructed CVE-based benchmark mitigates this
by encompassing 34 vulnerability types and 262 instances
enhancing our finding’s relevance, applicability, and reliability.
Another possible external threat exists from building the CVE-
based benchmark. This threat is intensified by the process of
labeling the filtered CVEs with vulnerability types defined in
our proposed taxonomy, encompassing both the overlapped
types and the unique types. Since some descriptions contained
in CVE entries lacked clarity, we traced back to the resources

linked within each entry to obtain confirmed explanations
to better label. This helped mitigate potential labeling bias
arising from vague descriptions. We also conducted a cross-
validation approach to eliminate human bias. Furthermore,
our study focuses on evaluating Android SAST tools that
detect general vulnerability types, excluding those designed
for specific types. The experiments were designed to evaluate
Android SAST tools that detected general vulnerability types,
rendering it inappropriate to include specialized tools. Despite
this limitation, our assessment of general vulnerability detection
tools still offers valuable insights for the field.

2) Internal Validity: The internal threat to the effectiveness
of our research comes from artificially constructed unified
taxonomy. While we have thoroughly examined and compared
the source code of each tool, potential human bias and
errors during the extraction and mapping of detection rules
remain a concern. To mitigate this threat, we have refined
our taxonomy via cross-validation by all authors. In addition,
in the experiments we have done, tools are executed in their
default configuration. The default configuration of different
tools may not be able to fully perform their functions, which
may affect their detection results. However, we limit the
experiment to the default configuration, because this is the
most likely configuration for most users.

V. RELATED WORK

Validating the effectiveness of Android SAST vulnerability
detection tools has become an important research direction.
Currently, evaluations mainly rely on synthetic benchmarks or
serveal real-world apps. For example, Ranganath et al. [18]
evaluated 14 Android SAST tools on GHERA, a synthetic
benchmark proposed by Mitra et al. [59]. The study used
GHERA’s coarse-grained categories (e.g., ICC) to identify
vulnerability types for tool evaluation leading to a rough
correspondence between the tools’ supported types and the
GHERA categories, while our evaluation delved into finer-
grained types, providing a more precise and detailed unified
mapping of the vulnerability types each tool can detect. Chen
et al. [7], [13] introduced AUSERA, a SAST tool with the
capability of automated vulnerability detection for Android apps,
and conducted an evaluation of 5 SAST tools. Meanwhile, the
study revealed several reasons for the false positives introduced
by the tools. Reaves et al. [34] conducted a systematic analysis
of the literature involving Android security research, providing
a comprehensive overview of Android SAST tools and a
discussion of the techniques and frameworks used in Android
SAST tools. In addition, they evaluated 7 SAST tools based on
the tools’ ease of use and successful scanning cases on a set
of Google Play apps. Senanayake et al. [19] also discussed the
Android vulnerability detection method based on comprehensive
related literature and provided an overview of the vulnerability
detection method based on machine learning and traditional
methods (i.e. static analysis and dynamic analysis).

However, the research mentioned above does not take into
account the inconsistency between vulnerability types supported
by the evaluation tools and vulnerability types supported by
the benchmark, which will introduce a certain bias in the
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evaluation. In other words, the comparisons can only focus on
coarse-grained quantities instead of fine-grained vulnerability
types. Meanwhile, evaluation only by the synthetic benchmarks
is limited. Our work proposed a unified taxonomy that contains
67 vulnerability types that can help construct a benchmark that
can better match the detection capabilities of different tools,
leading to more fine-grained evaluation results. Additionally,
both synthetic benchmarks and real-world benchmarks have
been investigated in this work.

Several prior studies have conducted evaluations of SAST
tools in different contexts such as Java [72], [75], [76],
JavaScript [77], C/C++ [73], and Solidity [78]. For instance,
Li et al. [72] compared 7 free-of-charge SAST tools using
the OWASP Benchmark and a constructed CVE Benchmark
consisting of 165 unique Java CVEs. Notably, while their
findings coincide with our findings on the limitations of syn-
thetic benchmarks, our study scope, distinct from it, focuses on
Android SAST tools, given the differences between the Android
and Java ecosystems, such as communication mechanisms,
which lead to distinct vulnerabilities. Our research delves into
the technical gaps in Android SAST tool performance for
detecting general vulnerabilities and conducts a quantitative
analysis, emphasizing the need for systematic research to reveal
insights in the Android domain, separate from the Java domain.

In summary, our work distinctively contributes to the state
of the art through the following aspects: 1) Target domain
(focused on general Android SAST tools), 2) Benchmarks used
(use of synthetic benchmarks and CVE-based benchmark), 3)
Evaluation methodology (introduction of a unified vulnerabil-
ity taxonomy plus a scalable and automated evaluation platform
(VulsTotal)), and 4) Evaluation scope (inclusive of aspects
like vulnerability type coverage and consistency, detection
effectiveness, and time performance).

VI. CONCLUSION

In this paper, we have taken the first step to build a
unified platform VulsTotal, which contains 67 general/common
vulnerability types and is further used to comprehensively and
effectively evaluate Android SAST tools. We then evaluated 11
selected Android SAST tools on both our newly constructed
real-world benchmarks and existing synthetic benchmarks.
Our study reveals numerous valuable insights into the tools’
performance and provides clear guidance for future optimization
and improvement of the tools and an innovative perspective
to complement previous work analyzing SAST tools. Future
work can focus on developing a more effective and efficient
tool based on the insights gained from this paper.
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