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ABSTRACT

The rise of code pre-trained models has signi�cantly enhanced var-

ious coding tasks, such as code completion, and tools like GitHub

Copilot. However, the substantial size of these models, especially

large models, poses a signi�cant challenge when it comes to �ne-

tuning them for speci�c downstream tasks. As an alternative ap-

proach, retrieval-based methods have emerged as a promising so-

lution, augmenting model predictions without the need for �ne-

tuning. Despite their potential, a signi�cant challenge is that the

designs of these methods often rely on heuristics, leaving critical

questions about what information should be stored or retrieved and

how to interpolate such information for augmenting predictions.

To tackle this challenge, we �rst perform a theoretical analysis of

the �ne-tuning process, highlighting the importance of Δ;>68CB as a

catalyst for improving model predictions. Building on this insight,

we develop a novel retrieval-based method, FT2Ra, which aims to

mimic genuine �ne-tuning. While FT2Ra adopts a retrieval-based

mechanism, it uniquely adopts a paradigm with a learning rate and

multi-epoch retrievals, which is similar to �ne-tuning.

We conducted a comprehensive evaluation of FT2Ra in both

token-level and line-level code completions. Our �ndings demon-

strate the remarkable e�ectiveness of FT2Ra when compared to

state-of-the-art methods and its potential to genuine �ne-tuning.

In token-level completion, which represents a relatively easier task,

FT2Ra achieves a 4.29% improvement in accuracy compared to

the best baseline method on UniXcoder. In the more challenging

line-level completion task, we observe a substantial ∼2×+ increase
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in Exact Match (EM) performance, indicating the signi�cant ad-

vantages of our theoretical analysis. Notably, even when operating

without actual �ne-tuning, FT2Ra exhibits competitive performance

compared to the models with real �ne-tuning.
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1 INTRODUCTION

In the realm of software engineering, code pre-trained models

(CPMs) specialized for code generation and completion are becom-

ing increasingly prevalent. Recently, a series of code completion

plugins such as GitHub Copilot [1], and Visual Studio IntelliCode [2]

have signi�cantly alleviated the burden on software developers and

enhanced their development e�ciency.

Code-centric pre-trained models are generally trained using vast

amounts of source code data harvested from open repositories. In

the inference phase, CPMs typically map the code pre�xes to �xed-

sized representations and use the representations to predict the next

code token. However, despite the extensive training data, CPMs still

struggle to capture rare or specialized patterns. On one hand, the

rarity of certain patterns in the training data makes it di�cult for

the model to learn them adequately. On the other hand, the complex

inter-dependencies between di�erent data samples could include

con�icting coding styles or logic that the model fails to reconcile.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Furthermore, these CPMs may not excel in speci�c domains where

task-oriented or project-speci�c knowledge is essential, such as

project-speci�c API invocations. For example, the recent study [54]

disclosed that these general-purpose pre-trained models are inferior

in repository-level code completion where the interrelated depen-

dencies among �les within a repository are missed for these general

models. Therefore, the post-training enhancement of these models

becomes a crucial task.

To tackle the outlined challenges, a straightforward approach

is to �ne-tune the pre-trained models using specialized data, such

as missing patterns or project-speci�c information. However, �ne-

tuning comes with its own set of limitations, particularly concern-

ing the computational resources required and the quality of data

necessary for e�ective adjustment. Fine-tuning the entire model

necessitates storing and updating a colossal parameter set, an op-

eration that becomes increasingly costly and often infeasible as

model size escalates into billions of parameters. Furthermore, the

success of this strategy hinges on the availability of high-quality,

task-speci�c data. While parameter-e�cient �ne-tuning techniques

have been proposed [18, 26, 35], they still demand considerable com-

putational resources for �ne-tuning.

Recent research [24, 47, 54] proposes an alternative route through

the use of retrieval-augmented language models (RaLMs). These

models supplement the capabilities of pre-trained models by incor-

porating retrieval mechanisms that source information (e.g., rare

patterns) from an external database, thereby bypassing the need for

additional �ne-tuning. This method enables the model to explicitly

store and retrieve rare patterns, as opposed to implicitly integrating

them into the model’s parameters [24]. This paradigm aligns well

with human learning behavior, where sparse examples are lever-

aged to generalize e�ectively to new situations. Empirical results

demonstrate that RaLMs can signi�cantly enhance the performance

of CPMs, particularly in the prediction of rare patterns.

For retrieval-augmented language models, two main challenges

exist the identi�cation of similar samples from an external data-

base and the e�ective utilization of this retrieved information for

making predictions. Typically, the former is addressed by retriev-

ing nearest neighbors based on distance metrics in a pre-trained

embedding space. For the latter, existing methods adopt di�erent

methods such as employing frequency analysis [51] and empiri-

cal probabilities [50] to integrate the retrieved information. For

example, kNN-LM [24] retrieves the neighbors and computes a

distribution over neighbors based on a softmax of their negative

distances, which are used to augment the original predictions. The

most recent work kNM-LM [47] retrieves the code tokens that the

language model fails to predict and normalize into a distribution,

which is merged with the predictions of the language model. While

these heuristic approaches have yielded promising results, they

largely depend on empirical settings, leaving theoretical gaps in

terms of what information should be retrieved and how this infor-

mation can be better exploited.

In this paper, to better understand the optimal use of retrieved

knowledge, we �rst conduct a theoretical analysis of the �ne-tuning

process in CPMs. Our theoretical analysis and derivation reveal

insights for designing a strategy that more closely approximates the

e�ects of �ne-tuning.While our theoretical derivation does incorpo-

rate certain approximations, the evaluation results still demonstrate

the e�ectiveness of the retrieval mechanism. Speci�cally, our anal-

ysis indicates that the logits discrepancy between the predicted

and actual values associated with neighbors (i.e., Δ;>68CB) 1 serves

as crucial information for augmenting CPM predictions. Based on

the analysis, we develop a novel retrieval-augmentation technique,

denoted as FT2Ra, for code completion tasks. CPMs can recalibrate

and improve its predictions by adding the Δ;>68CB to its logit output.

Furthermore, akin to the iterative nature of the �ne-tuning process,

FT2Ra is designed to operate through an iterative retrieval cycle,

progressively updating the external database to re�ne the quality of

retrieved information, thereby continuously improving prediction

accuracy.

To showcase the e�ectiveness of FT2Ra, we selected four state-

of-the-art retrieval-based methods: kNN-LM [24], kNM-LM [47],

ReACC [36], and BM25 [44]. Our evaluation encompassed both

token-level and line-level code completion. The experimental re-

sults demonstrate that, guided by our theoretical analysis, FT2Ra

signi�cantly outperforms the baseline methods and achieves com-

petitive performance similar to actual �ne-tuned models. For in-

stance, in the context of token-level completion, FT2Ra obtains an

average accuracy of 74.22% (4.29%+) on UniXcoder, whereas UniX-

coder and the top-performing baseline, kNM-LM, achieve accuracy

of 54.07% and 69.93%, respectively. In the more challenging line-

level completion task, FT2Ra achieves an average Exact Match (EM)

score of 26.32 (∼2×+ ) on UniXcoder. In contrast, UniXcoder and

kNM-LM only manage scores of 1.63 and 13.93, respectively. We

also observed that, in line-level completion using UniXcoder, FT2Ra

achieves performance better than that of the �ne-tuned UniXcoder

model after 10 epochs, even when operating without �ne-tuning.

These results not only demonstrate the e�ectiveness of FT2Ra but

also highlight its signi�cant potential to achieve competitive re-

sults comparable to those of �ne-tuned models. Furthermore, our

additional evaluations reveal that the iterative retrieval mechanism

designed within FT2Ra signi�cantly contributes to its performance.

In summary, this paper makes the following contributions:

• Theoretical Analysis: We perform a theoretical analysis of

the model �ne-tuning process. This analysis provides valuable

insights into how to e�ectively exploit retrieval information in

retrieval augmentation mechanisms.

• Methodology: Building upon the insights derived from our the-

oretical analysis, we introduce a novel method called FT2Ra. This

innovative approach emulates real �ne-tuning through an itera-

tive retrieval process, enhancing its e�ectiveness.

• Comprehensive Evaluation: We conduct an extensive evalua-

tion to evaluate the e�ectiveness of FT2Ra in both token-level and

line-level code completion tasks. The results highlight substantial

improvements achieved by FT2Ra.

• Open-Source Resources: We have made the pertinent data, de-

tailed experimental �ndings, and the tools publicly available [3].

1
Δ;>68CB represents the di�erence in logits before and after gradient descent, which

can be expressed as Δ;>68CB = ;>68CB′ − ;>68CB .
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2 BACKGROUND AND PROBLEM

2.1 Retrieval-Augmented Language Models

Recently, a series of retrieval-augmented language models [14, 24,

47] have been proposed to augment language models with exter-

nal knowledge [9, 17, 53]. Retrieval-augmented techniques can

generally be divided into two types. The �rst type is at the input

layer [14, 20, 42], where the retrieved information is text chunks.

The second type is at the output layer [7, 24, 47], where the retrieved

information is tokens. By combining the retrieved tokens with the

tokens generated by the original model, the accuracy of the retrieval-

augmented model’s generation for each token can be improved.

The �rst type of method can provide the model with more external

knowledge, making it adept at handling tasks in the NLP �eld such

as knowledge-based question answering [27, 45, 49]. The second

type of method can refer to the retrieved information to correct

the generated tokens, making it more suited for handling strictly

structured generative tasks, such as code completion [7, 10, 11]. In

this work, we mainly focus on the second category.

To better understand the mechanism, we take kNN-LM [24] as an

example for a detailed explanation. Given a context sequence 2C =

(F1, . . . ,FC−1), the language models (LMs) estimate ?!" (FC |2C ),

i.e., the probability distribution over the next tokenFC . kNN-LM

is designed to augment a pre-trained language model with a set

of nearest neighbours retrieved from an external text collection,

which can be the training set� . Di�erent from �ne-tuning, retrieval

augmentation does not need any retraining. In particular, RaLM in-

cludes two tasks, i.e., building a datastore and retrieval-augmented

inference.

Datastore: The datastore is a retrieval set, which can be built with

a forward pass by LM on the prepared text collection to store the

context-target pairs as the subject of a query. We denote a function

5 (·) to map a context 2 to a �xed-length vector representation

computed by a pre-trained LM. Given an example (28 ,F8 ) ∈ � , we

can pass 28 to a LM to get its vector representation, i.e., :8 = 5 (28 ).

The dataset � is a set of datasets such as the training data or other

domain-speci�c data. In this way, we can obtain the key-value pair

(:8 , E8 ), where :8 is the context representation computed from LM

and E8 is the target wordF8 . Hence, the datastore ( ,+ ) is a set of

all context-target pairs built from � , which can be expressed as:

( ,+ ) = {(5 (28 ),F8 ) | (28 ,F8 ) ∈ �} (1)

Inference: The inference phase includes neighbour retrieval and

the use of neighbour prediction information. Given a new input

G , the model �rst computes its context representation i.e., 5 (G).

Using 5 (G) as a query to retrieve the :-nearest neighboursN from

the datastore ( ,+ ) based on a de�ned distance function 38B (·)

such as Euclidean distance. Then it computes a distribution over

these : neighbors using a softmax function. The probability for

each vocabulary item is aggregated across all occurrences in the

retrieved targets. Note that the items in the vocabulary set that do

not appear in the retrieved targets have a probability of zero.

?:## (~ |G) ∝
∑

(:8 ,E8 ) ∈N

1{~=E8 } exp(−38B (:8 , 5 (G))) (2)

The �nal distribution is interpolated with the original LM distribu-

tion ?!" (~ |G) and ?:## (~ |G) to obtain the joint distribution:

? (~ |G) = (1 − _)?!" (~ |G) + _?:## (~ |G) (3)

where _ is a tuned hyper-parameter to control the weight of gener-

ation and retrieval.

2.2 Problem

From Equation 3, we can observe that the �nal distribution of kNN

is the weighted sum of the original LM distribution i.e., ?!" (~ |G)

and the retrieved nearest neighbor distribution i.e., ?:## (~ |G). The

key problem is how to interpolate the retrieved knowledge in the

prediction, i.e., the design of ?:## (~ |G). In kNN-LM, ?:## (~ |G)

is computed from Equation. 2 based on negative distances and

the aggregated probability for each vocabulary item across all its

occurrences in the retrieved targets. While the design is intuitive,

it is still based on heuristics and lacks theoretical analysis and

explanation. A key question to identify what kinds of information

should be retrieved and how best to leverage that information.

3 APPROACH

In this section, we delve into a theoretical analysis aimed at iden-

tifying useful retrieval information, drawing inspiration from the

�ne-tuning process commonly employed for enhancing the perfor-

mance of CPMs. Subsequently, we introduce our method, FT2Ra,

which focuses on the e�ective interpolation of this retrieved infor-

mation to improve the predictive accuracy of CPMs.

3.1 Inspiration From Fine-tuning

Fine-tuning serves as a practical technique for boosting the perfor-

mance of pre-trained models, particularly when applied to domain-

speci�c tasks or datasets that the original model may not adequately

cover. Our goal is to distil insights from themechanics of �ne-tuning

to inform the design of a retrieval-augmented method that approxi-

mates the performance improvements seen with �ne-tuning, yet

obviates the need for the �ne-tuning process itself.

LetM represent a given language model capable of predicting

the next token GC based on its preceding context sequence G =

(G1, G2, . . . , GC−1). We proceed with the following de�nitions:

• \ denotes the trained model parameters ofM.

• ~ is the ground-truth for GC as a one-hot encoding, where the

index corresponding to GC is marked as 1 while other indices are

0. ~ ∈ RE is a vector where E is the length of the vocabulary set.

• ~′ is the model prediction result for the next token, i.e., ~′ =

M(G |\ ) and ~′ ∈ RE , which denotes the predicted probability of

each token in the vocabulary set with the context. Typically, ~′

is the output for the probability layer of the modelM.

• ;>68CB ∈ RE encapsulates the values in the logits layer, preceding

the probability layer.

• B4@>DC ∈ R3<>34; is the output of the decoder sequence output

layer, preceding the logits layer, and 3<>34; is the dimension of

this layer.

Suppose the LM M undergoes �ne-tuning through multiple

epochs, following best practices. Without loss of generality, we

assume that the loss for a given input G diminishes after each

iteration of the �ne-tuning (i.e., the gradient descent algorithm).
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Let \ and \ ′ denote the model’s parameters before and after an

epoch of �ne-tuning, respectively, such that \ ′ = \ + Δ\ . The

corresponding loss values before and after the �ne-tuning are:

; = L(M(G |\ ), ~), ; ′ = L(M(G |\ ′), ~)

where L is the loss function, and ~ is the ground truth for the

given context sequence G . We de�ne the change in the loss as

Δ; = ; ′ − ; . Given that the language model is di�erentiable, the

change in loss Δ; can be expressed as:

Δ; = L(M(G |\ + Δ\ ), ~) − L(M(G |\ ), ~) (4)

In gradient descent, the learning rate [\ controls the magnitude

of parameter updates:

Δ\ = −[\ ×
mL

m\
(5)

On the other hand, the loss can also be formulated in terms of

logits, ; = L(B> 5 C<0G (;>68CB), ~), where ;>68CB is the model output

on G and~ is the ground truth. After one iteration of the gradient de-

scent, the loss value ; ′ can be described as ; ′ = L(B> 5 C<0G (;>68CB′), ~),

with ;>68CB′ denoting the output of the updatedmodel. LetΔ;>68CB =

;>68CB′ − ;>68CB , and we can derive:

Δ; = L(B> 5 C<0G (;>68CB + Δ;>68CB), ~) − L(B> 5 C<0G (;>68CB), ~)

= (Δ;>68CB)) ·
mL

m;>68CB
(6)

Intuitively, if we can develop amethod for approximatingΔ;>68CB

without actually engaging in �ne-tuning, then these approximated

Δ;>68CB could be directly interpolated into the predictions of the

model. This mimics the e�ects of �ne-tuning and may achieve

comparable performance, depending on the accuracy of the Δ;>68CB

approximation.

We observe the �nal LM-head layer of the generative model,

where ;>68CB = ;<_ℎ403 (B4@>DC). We ignore the activation layer in

LM-head and can approximately treat the LM-head as a linear layer,

from which we can derive:

;>68CB ≈, · B4@>DC + 1 (7)

where, is a weight matrix with the dimension E * 3<>34; .

From equation 7, using the chain rule for di�erentiation [4], we

get:

m;

m,
=

m;

m;>68CB
· B4@>DC) (8)

During the gradient descent process, since , is a part of \ ,

according to equation 5, it also follows the gradient descent rule:

Δ, = −[\ ·
m;

m,
(9)

When we �x the parameters preceding B4@>DC and only �ne-

tune the subsequent parameters of the model, then according to

equation 7, 8 and 9, we make an approximation:

Δlogits ≈ Δ, · B4@>DC

= −[\ ·
m;

m,
· B4@>DC

= −[\ ·
m;

m;>68CB
· B4@>DC) · B4@>DC

= −[\ · | |B4@>DC | |
2
2 ·

m;

m;>68CB

(10)

We use | |B4@>DC | |2 to denote the L2 norm of B4@>DC . Furthermore,

we de�ne −[;>68CB as −[\ · | |B4@>DC | |
2
2, and we can get:

Δ;>68CB ≈ −[;>68CB ×
mL

m;>68CB
(11)

Equation 11 o�ers a feasible methodology for calculating changes

in logits, which can be employed to bolster the current model’s

performance on G reducing its loss. To obtain the value of mL
m;>68CB

,

we propose the retrieval-based method detailed in Section 3.2.1.

Our derivation implies new insights about what kind of infor-

mation should be stored and retrieved (i.e., the Δ;>68CB) and how to

leverage the information (i.e., add Δ;>68CB to the predicted logits). In

summary, it introduces the following bene�ts: 1) the retrieval mech-

anism is theoretically grounded, di�erent from the existing mere

heuristic approaches, 2) the retrieval mechanism tries to mimic the

�ne-tuning process, which has a high potential to achieve high per-

formance and 3) the retrieved knowledge regarding Δ;>68CB is more

�ne-grained compared to existing methods, and its integration into

the prediction process is both straightforward and direct.

3.2 Algorithm

Building on the theoretical insights from �ne-tuning, we introduce

a novel retrieval-augmented method.

3.2.1 Approximation of mL
m;>68CB

. To approximate the value of mL
m;>68CB

shown in Equation 11, we employ the nearest : neighbors of the

sample G for the estimation. The approximation is formulated as

mL

m;>68CB
≈
∑

8

_8 ×
mL8

m;>68CB8
(12)

where 1 ≤ 8 ≤ : represents the 8Cℎ neighbor and _8 serves as a

hyper-parameter to adjust the contribution of each neighbor to the

approximation. Since mL8

m;>68CB8
is the partial derivative with respect

to the logits layer, we have mL8

m;>68CB8
= ~′8 − ~8 for each neighbor.

Incorporating this into Equation 12 yields:

mL

m;>68CB
≈
∑

8

_8 × (~
′
8 − ~8 ) (13)

Finally, we integrate Equation 13 into Equation 11 to derive:

Δ;>68CB ≈ −[;>68CB ×
∑

8

_8 × (~
′
8 − ~8 )

;>68CB′ ≈ ;>68CB − [;>68CB ×
∑

8

_8 × (~
′
8 − ~8 ) (14)

Given an input G , Equation 14 o�ers a mechanism to calculate

new logits by leveraging both the original prediction and the con-

tributions from the nearest neighbours.
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Algorithm 1: FT2Ra

Input: Test sample: G , large model:M, learning rate:

[;>68CB , datastore: ( ,+ ),

the number of neighbours: # , the number of iterations: �

Output: The output: ~′G
1 A ← 5M (G)

2 (., !, �) ← A4CA84E4 (A, # , ( ,+ ))

3 for 4 ∈ {1, . . . , �} do

4 Δ;>68CB ← 0

5 ;>68CBG ← 20;_;>68CB (M, G)

6 for (~8 , ;>68CB8 ) ∈ (., !) do

7 ~′8 ← B> 5 C<0G (;>68CB8 )

8 _8 ← 20;_F486ℎC (38 , �)

9 Δ;>68CB8 ← _8 × [;>68CB (y8 − y’8 )

10 Δ;>68CB ← Δ;>68CB + Δ;>68CB8

11 ;>68CBG ← ;>68CBG + Δ;>68CB

12 for ;8 ∈ ! do

13 ;8 ← ;8 + Δ;>68CB

14 ~′G = B> 5 C<0G (;>68CBG )

15 return ~′G

3.2.2 Datastore Construction. As with prior work in this area [24,

47], a retrieval set, referred to as datastore � , is essential for stor-

ing context-target pairs, often represented as key-value pairs. The

nature of the knowledge encapsulated in this datastore depends on

the speci�c retrieval mechanism employed, particularly the type of

information used for the calculation.

In the datastore, each key is generated to facilitate distance calcu-

lation between the given input and the elements in the retrieval set.

For a given training example (28 ,F8 ) ∈ � , we map the context 28 to

a �xed-length vector representation using a function 5 (·). In line

with previous research [24], we utilize the last hidden states (i.e.,

the output of the �nal layer of the CPM as this mapping function

5 (·). Hence, the key for each entry is :8 = 5 (28 ).

Considering Equation 14, the value associated with each key

should include both the ground truth ~8 (which corresponds to

F8 in a one-hot encoded format) and the predicted probability

distribution ~′8 . Instead of storing the probability vector, we opt

to store the corresponding logits vector ;>68CB8 . This is because:

1) The predicted probability ~′8 can be easily recalculated from

;>68CB8 whenever needed and 2) Storing ;>68CB8 allows for their use

in multiple retrieval iterations, as will be detailed in Section 3.2.3.

Given these considerations, the datastore is formally de�ned as:

( ,+ ) = {(5 (28 ), (~8 , ;>68CB8 )) | (28 ,F8 ) ∈ �}

3.2.3 Iterative Nearest Neighbor Retrieving. Algorithm 1 outlines

the steps involved in the execution of FT2Ra, our retrieval-augmented

language model. The inputs to FT2Ra include: an input context G ,

the original pre-trained model M, the learning rate [;>68CB , the

datastore ( ,+ ), the number of neighbors to retrieve # , and the

number of iterative retrieval cycles �. The output generated by

FT2Ra is the updated prediction ~′G .

Initially, FT2Ra computes the representation vector A of the input

G , using it to fetch the top-# nearest neighbors from the datastore

(lines 1–2). An iterative retrieval process then follows, which is a

unique feature compared to existingmethods. The iterative retrieval

process is similar to the process of model �ne-tuning conducted

over a speci�ed number of epochs, denoted as � (lines 3–13). At each

iteration, the original model’s prediction (retrieved from ;>68CBG in

line 5) is adjusted based on the logits alteration computed from the

retrieved neighbors (lines 6–10).

It’s worth noting that neighbors may vary in their relevance to

the input context. Accordingly, we introduce weights _8 for each

neighbor (line 8). These weights are calculated based on the inverse

of the distance between the neighbors and the input:

_8 =
1/(38 + 1)∑

3∈� (1/(3 + 1))
(15)

Intuitively, a smaller distance between a neighbor and the input

results in a higher weight, meaning that closer neighbors contribute

more substantially to the updated prediction.

Finally, FT2Ra updates the logits using the calculated change in

logits, which has been interpolated from retrieved samples (line 11).

To facilitate further iterations of the retrieval process, the datastore

is also updated (line 13). While an ideal update method would

involve recalculating the entire datastore using Equation 14, we

opt for a more computationally e�cient strategy. Speci�cally, we

maintain the same set of neighbors across all iterations and apply a

constant Δ;>68CB to the logits of these neighbors, balancing e�cacy

with computational e�ciency.

Discussions. Di�ering from existing methods, FT2Ra provides

two main advantages. First, it employs detailed retrieval informa-

tion, Δ;>68CB , for a more precise evaluation of each retrieved neigh-

bor’s in�uence on the �nal prediction. Second, its iterative retrieval

cycles can further improve performance. It’s important to note that

these multiple iterations are not actual �ne-tuning, but rather a se-

ries of retrieval processes. These iterations are also optional and can

be adjusted according to speci�c needs, like accuracy and inference

e�ciency. In our evaluation, we found that FT2Ra outperformed

baseline models even with just one iteration (the conventional set-

ting). With multiple iterations, however, FT2Ra’s performance can

be further enhanced (see results in RQ4).

4 EXPERIMENTAL SETUP

The experimental design considers two completion scenarios: token-

level and line-level completions, on models with or without �ne-

tuning. Speci�cally, we aim to answer the research questions:

• RQ1: How e�ective is FT2Ra in the two completion tasks?

• RQ2: To what extent can FT2Ra approximate the e�ect of actual

�ne-tuning?

• RQ3: How do di�erent parameter settings, including the weight-

ing strategies and the number of neighbours selected, a�ect

FT2Ra’s performance?

• RQ4: How useful is the multi-round iteration strategy in FT2Ra?

4.1 Benchmarks

Completion Scenario. Based on the scale of completion, we con-

sider two completion scenarios, i.e., token-level and line-level com-

pletions. For token-level completion, the model predicts the next

317



ISSTA ’24, September 16–20, 2024, Vienna, Austria Qi Guo, Xiaohong Li, Xiaofei Xie, Shangqing Liu, Ze Tang, Ruitao Feng, Junjie Wang, Jidong Ge, and Lei Bu

token, based on the given (correct) context. The metric for evalua-

tion in token-level completion is accuracy, i.e., checking whether

each completion is correct. For line-level completion, the model

performs repeated execution of token-level completion until a line

is completed, and retrieval occurs at every step of token prediction.

Contrasting with token-level completions, predictions for each to-

ken depend on the prediction of the preceding token, which might

be incorrect. In line with CodeXGLUE [37], the chosen evaluation

metrics are exact match (EM) and edit similarity (ES).

Datasets. We have chosen two widely used benchmarks for our

study: the dataset from kNM-LM [47] and the code completion

benchmarks from CodeXGLUE [37]. Speci�cally, kNM-LM bench-

mark comprises 20 Java projects: 10 large-scale and 10 small-scale.

In our experiments, we selected the ten larger projects. CodeXGLUE

benchmarks contain code samples written in both Java and Python

programming languages, i.e., JavaCorpus [6] and PY150 [43].

We follow the settings in [37, 47] for preparing and splitting the

training and testing data. The training dataset can be used to �ne-

tune the pre-trained models. Note that the kNM-LM benchmarks do

not provide a pre-de�ned test set tailored for line-level completion.

To circumvent this, we follow the instructions in [6]. Speci�cally,

we randomly extract 300 lines of code from the test data of each

project to serve as targets for model completion. For evaluations

regarding token-level predictions, we let the models predict each

individual token in the test code samples.

Models. Following the state-of-the-art work [47], we selected

two widely used code pre-trained models in our experiments: 1)

CodeGPT [37]: It is a GPT-style code pre-trained model to support

code completion. CodeGPT has the same model architecture and

training objectives as GPT-2 [41], which consists of 12 layers of

Transformer decoders. CodeGPT is pre-trained on Python and Java

corpora from CodeSearchNet [19], which includes 1.1M Python

code and 1.6M Java code. CodeGPT-adapted is pre-trained fromGPT-

2 and we use CodeGPT-small-java-adaptedGPT2 and CodeGPT-

small-python-adaptedGPT2 to evaluate code completion in Java

and Python datasets, respectively. 2) UniXcoder [13]: It is a cross-

modal pre-trained model using mask attention matrices with pre�x

adapters to control the model behaviour. Furthermore, it leverages

cross-modal contents such as AST and code comment to enhance

the code representations. Speci�cally, it consists of 12 layers of

Transformer with 768-dimensional hidden states. UniXcoder is pre-

trained on the CodeSearchNet [19] dataset for six programming

languages including Java and Python.

Although our method is general, in this paper, we did not se-

lect very large models like CodeGen, InCoder, and CodeLLama, as

�ne-tuning them demands substantial computing resources. This re-

quirement arises particularly because 1) the dataset includes unique

symbols (e.g., < ()'_!�) >, < #*"_!�) >, < ���'_!�) >) that

necessitate specialized �ne-tuning and 2) our experimental setting

in RQ2 requires �ne-tuning. Consequently, we chose two large

CPMs, as suggested in the recent study [47].

4.2 Baselines

Four state-of-the-art retrieval-based baselines are selected for com-

parisons, including kNN-LM, kNM-LM, BM25 and ReACC, where

BM25 and ReACC are suitable to the line-level completions.

• kNN-LM [24]: It augments the prediction of a pre-trained lan-

guage model by linearly interpolating its next word distribution

with a k-nearest neighbours model. The nearest neighbours are

computed based on the distance in the vector space with a single

forward pass of a pre-trained model over the retrieved dataset.

The �nal distribution is the weighted sum of the original model

distribution and the nearest neighbour distribution.

• kNM-LM [47]: It utilizes the in-domain code to construct the

retrieved datastore decouple from LM and then combines with

LM by Bayesian Inference for code completion. Compared with

kNN-LM, it is able to calculate the posterior probability and

utilize it to merge the distributions of nearest neighbours and

the original model, which avoids manual weight tuning between

the model distribution and neighbour distribution.

• BM25 [44]: It is a term-based retrieval approach, which considers

each code fragment as a code token sequence and employs bag-

of-words representations to compute the matching score based

on the lexical similarity between the query and document. Hence,

it is more suitable for the line-level completion. As BM25 is based

on the term frequency, it is one kind of sparse retriever.

• ReACC [36]: It is a hybrid retriever framework by combining

scores of sparse and dense retrievers. For sparse retrievers, it uses

BM25 [44] for implementation. For dense retriever, it maps each

code fragment to a dense vector based on the DPR model [23],

which consists of two bidirectional transformer encoders to en-

code the query code and the retrieved code for the retrieval.

Con�gurations. Considering the hyper-parameters in Algorithm 1,

in our experiments, we con�gured the number of neighbors (# )

and the number of iterations (�) to 20 and 7, respectively. Addi-

tionally, we set the learning rates ([;>68CB ) to speci�c values: 3 for

JavaCorpus, 5 for PY150, and 5 for the kNM-LM dataset. It’s worth

noting that we thoroughly evaluated and discussed various settings

of these hyperparameters in RQ2 and RQ3. For the other baseline

methods, we selected the default con�guration used in their papers.

Notably, kNN-LM is not applied in code learning tasks, we followed

the same con�gurations as described in [47].

5 EXPERIMENTAL RESULTS

5.1 RQ1: E�ectiveness on pre-trained models

Themain goal of the retrieval augmentation is to bolster themodel’s

performance without the need for �ne-tuning. Therefore, this ex-

periment aims to evaluate the e�ectiveness of FT2Ra on pre-trained

models without �ne-tuning.

Token-level Completion. The results for token-level completion

are shown in Table 1, including the results on the ten Java projects

from kNM-LM and the two CodeXGLUE benchmarks. The Original

column shows the results with the pre-trained models.

The overall results show that, compared with the original pre-

trained models, all retrieval-augmented techniques have a higher

accuracy, demonstrating the usefulness of retrieval-based augmen-

tation. Furthermore, we can see that FT2Ra signi�cantly outper-

forms the baselines across all datasets and models. For example,

while the average accuracies of pre-trained models on CodeGPT

and UniXcoder stand at 55.46% and 54.07%, respectively, FT2Ra

increases the performance to 73.19% and 74.22%, outperforming all
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Inputs:

…
form = SQLFORM.factory( Field('filename', requires=IS_IN_SET(files), label ?

Ground Truth: 

FT2Ra: 

CodeGPT:

kNN-LM 

BM25&ReACC

kNM-LM:

=T ( "<STR_LIT>" ) , <EOL>

=T ( "<STR_LIT>" ) , <EOL>

=T ( "<STR_LIT>" ) , requires = IS_IN_SET ( files) , label…
=T ( "<STR_LIT>" ) , require = IS_IN_SET ( files) , require…
=T ( "<STR_LIT>" ) , requires = IS_IN_SET ( files) , label…
, <EOL>

FT2Ra prediction on tokens (requires, <EOL>,...)

Iter. Logits Δ logits Updated logits Pred.

1 (10.85,0.0,...) (-0.001,2.88,…) (10.85, 2.88,…) requires

… … … … …

5 (10.84, 8.77,...) (-0.001,1.94,…) (10.84,10.71,…) requires

6 (10.84,10.71,…) (-0.001,1.40,…) (10.84,12.11,…) <EOL>

7 (10.84,12.11,…) (-0.001,0.88,…) (10.84,12.99,…) <EOL>

Figure 1: Case study for CodeGPT line-level completion on PY150

Table 1: Results of token-level completion on pre-trained models (%).

Type Dataset
CodeGPT UniXcoder

Original kNN-LM kNM-LM FT2Ra Original kNN-LM kNM-LM FT2Ra

kNM-LM

Rest. 46.99 54.99 70.71 77.68 42.59 50.86 71.26 77.58
Amaze. 55.22 58.33 66.34 71.00 54.65 56.73 68.14 71.79

Dropwizard 50.11 55.00 65.50 71.14 47.15 51.30 66.56 70.12
Eureka 52.76 55.73 64.56 70.15 51.00 54.36 66.01 69.35
Feign 48.71 54.47 70.63 77.48 45.01 50.36 70.87 77.12
Galaxy 53.40 55.57 64.90 69.24 49.57 52.47 65.16 69.25

Interview 64.70 66.46 69.29 73.14 62.91 64.80 71.54 75.27
Logging. 60.06 65.10 79.10 87.38 56.95 61.85 79.69 86.30
Requery 56.69 59.44 68.39 75.75 54.11 56.07 68.66 74.91
Froyo. 59.53 62.56 67.64 71.04 58.79 61.31 69.38 72.79
Avg. 54.82 58.77 68.71 74.40 52.27 56.01 69.73 74.45

CodeXGLUE
JavaCorpus 64.95 67.83 70.74 72.07 65.61 67.92 72.13 74.73

PY150 52.41 55.35 60.94 62.19 60.44 64.62 69.81 71.43

Total Avg. 55.46 59.24 68.23 73.19 54.07 57.72 69.93 74.22

baseline models. Moreover, in comparison with the best baseline

kNM-LM, FT2Ra boasts an average increase of 4.96% for CodeGPT

and 4.29% for UniXcoder. The results demonstrate the e�ectiveness

of FT2Ra in token-level completion.

Line-level Completion. The results for line-level completion,

evaluated on CodeGPT and UniXcoder, are presented in Table 2.

The metrics of exact match and edit similarity are represented

by the columns EM and ES, respectively. Similarly, we can �nd

that all of the retrieval-based methods could still enhance the per-

formance, but the improvement degree of baselines is generally

limited. For example, on average, kNN-LM, kNM-KM, BM25 and

ReACC achieve scores (7.12, 56.74), (11.68, 46.99), (5.30, 53.59) and

(5.43, 53.64) on CodeGPT, respectively, while the pre-trained model

achieves (4.19, 51.71). While the recent state-of-the-art kNM-LM

can achieve higher EM scores than other baselines, its ES scores

are lower. The low performance of baselines could be attributed

to the di�culty of the line-level completion. Any incorrect token

prediction (inaccurate context) could a�ect the prediction of the

following tokens. It is obvious that FT2Ra signi�cantly outperforms

the baselines, manifesting its superiority in both the EM and ES

metrics across all datasets and models. Considering the results on

CodeGPT, FT2Ra increases the scores to (24.35, 67.90). While on

UniXcoder, FT2Ra achieves higher improvement (26.32, 70.11) than

the pre-trained model (1.63, 50.54) and the baselines. The results

demonstrate the e�ectiveness of our proposed retrieval mechanism

on line-level completion.

We have observed that the performance of various methods

varies across di�erent datasets and models. Considering the re-

sults on the dataset Froyo., we �nd that all methods consistently

achieve higher EM scores on CodeGPT compared to UniXcoder. In-

terestingly, all baseline models, including pre-trained ones, exhibit

poor performance on the PY150 dataset but demonstrate better

results on the JavaCorpus dataset. Upon our in-depth analysis of

CodeGPT, we discovered that the pre-trained model CodeGPT-

small-py-adaptedGPT2 tends to underestimate the probability of

end-of-line tokens (<EOL>). We randomly selected 30 test data

instances from PY150, speci�cally targeting cases where FT2Ra

succeeded while the original model failed. We discovered that 9

of these instances reached the maximum token prediction count

(set at 100) when predicted by CodeGPT. In contrast, we randomly

checked 100 instances in JavaCorpus predicted by CodeGPT-small-

java-adaptedGPT2, and none of the predictions reached the token

count limit. This discrepancy could be attributed to the natural line

termination indicators present in Java code such as semicolons and

braces, which allow the model to easily discern when to stop the

prediction. However, in Python, the model must accurately predict

the <EOL> symbol to recognize the end of a statement. Compared

with others, FT2Ra exhibits signi�cant enhancements on the PY150

dataset, with improvements of (18.48, 50.52) and (29.17, 59.00) when

evaluated on CodeGPT and UniXcoder, respectively.

In Figure 1, we present an illustrative example that shows the

advantage of FT2Ra when applied to PY150. Upon examining the

results obtained by di�erent methods, we observe that, except for

kNM-LM, all models accurately predict the initial seven tokens.
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Table 2: Results of line-level completion on pre-trained models (%).

Type Dataset
CodeGPT

Original kNN-LM kNM-LM BM25 ReACC FT2Ra
EM ES EM ES EM ES EM ES EM ES EM ES

kNM-LM

Rest. 1.00 49.36 1.00 53.68 9.63 47.05 3.99 53.48 3.99 53.05 17.94 70.62
Amaze. 1.99 56.86 3.99 57.94 9.30 47.75 2.99 59.25 2.99 58.89 22.92 66.54

Dropwizard 1.00 52.13 2.33 57.83 4.65 49.56 1.33 52.52 1.33 51.84 22.59 69.34
Eureka 3.99 55.76 5.32 58.20 8.31 50.41 3.99 57.59 3.99 57.78 20.93 68.00
Feign 1.33 47.72 3.32 52.77 10.63 47.19 3.99 53.50 3.99 53.21 25.91 72.34
Galaxy 1.33 50.97 2.66 54.61 11.96 48.53 2.66 51.72 2.33 52.07 22.26 64.14

Interview 8.97 61.63 13.95 62.80 19.60 57.28 9.30 61.41 9.97 62.91 27.91 71.08
Logging. 2.66 59.04 5.98 63.13 15.28 58.59 6.31 63.42 6.64 63.64 33.89 80.63
Requery 5.98 61.76 8.97 62.81 9.63 46.51 6.64 63.21 7.31 63.12 28.24 73.11
Froyo. 8.31 63.96 11.30 65.85 16.28 55.58 7.97 63.90 8.31 63.93 28.24 73.91
Avg. 3.65 55.92 5.88 58.96 11.53 50.85 4.92 58.00 5.08 58.04 25.08 70.97

CodeXGLUE
JavaCorpus 13.69 48.74 16.28 49.90 16.18 43.89 14.19 49.73 14.19 49.85 22.88 54.54

PY150 0.00 12.54 10.39 41.40 8.69 11.56 0.20 13.35 0.20 13.36 18.48 50.52

Total Avg. 4.19 51.71 7.12 56.74 11.68 46.99 5.30 53.59 5.43 53.64 24.35 67.90

Type Dataset
UniXcoder

Original kNN-LM kNM-LM BM25 ReACC FT2Ra
EM ES EM ES EM ES EM ES EM ES EM ES

kNM-LM

Rest. 0.66 50.12 1.66 52.07 11.30 54.05 1.99 63.46 1.99 64.66 18.94 72.17
Amaze. 1.33 56.00 1.66 58.40 13.29 55.28 1.00 58.87 1.00 59.04 23.26 66.92

Dropwizard 0.00 49.44 1.33 54.89 16.61 56.41 0.66 59.82 0.66 58.33 20.27 69.94
Eureka 0.33 55.44 1.66 59.39 15.61 58.91 0.00 63.56 0.00 62.23 22.26 69.98
Feign 0.00 50.06 1.00 52.46 8.97 52.99 4.65 67.68 4.65 67.39 27.24 75.24
Galaxy 0.33 50.06 0.33 53.06 13.29 47.61 1.00 54.89 1.00 54.86 21.26 64.56

Interview 4.65 59.89 7.31 61.88 20.93 62.78 2.66 58.28 3.32 57.65 30.56 73.34
Logging. 0.00 55.11 4.98 60.78 17.28 59.45 3.32 72.28 3.99 72.45 35.22 81.23
Requery 2.33 60.56 3.99 61.92 14.95 56.73 2.33 65.34 2.33 65.14 30.56 73.79
Froyo. 1.33 63.60 1.99 65.14 21.93 62.75 2.33 63.94 2.66 64.09 32.56 76.46
Avg. 1.10 55.03 2.59 58.00 15.42 56.70 1.99 62.81 2.16 62.58 26.21 72.36

CodeXGLUE
JavaCorpus 8.49 47.72 9.99 49.69 12.89 48.06 7.79 46.97 7.79 47.09 24.58 58.67

PY150 0.10 8.43 0.00 8.60 0.10 12.74 0.00 7.46 0.00 7.43 29.17 59.00

Total Avg. 1.63 50.54 2.99 53.19 13.93 52.31 2.31 56.88 2.45 56.70 26.32 70.11

Figure 2: Venn diagram of the EM results on CodeGPT (left)

and UniXcoder (right).

However, when reaching the eighth token, the baselines, including

the original model, cannot predict the correct termination token

<EOL>. Instead, they predict the token requires, which leads to an

uninterrupted sequence of predictions until reaching the maximum

token count. By checking CodeGPT’s prediction on the eighth to-

ken, we discover that the token requires has the highest prediction

probability (0.13), while the token <EOL> receives a prediction

probability of 0, making it challenging for the baselines to correct

the prediction. kNM-LM exhibits too much augmentation, resulting

in incorrect predictions for even the �rst token. The table on the

right provides detailed insights into how FT2Ra corrects the predic-

tion. Despite the stubborn prediction of requires, FT2Ra leverages

the calculation of Δ;>68CB across multiple iterations to steadily in-

crease the logits of the token <EOL> while decreasing the logits of

Table 3: Results of average generation time per token (s).

Input Retrieval Output Retrieval
Original BM25 ReACC kNN-LM kNM-LM FT2Ra

CodeGPT 0.0163 0.0161 0.0164 0.0208 0.0193 0.0271
UniXcoder 0.0134 0.0143 0.0135 0.0163 0.0155 0.0214

requires. Ultimately, at the sixth iteration, FT2Ra successfully �xes

the prediction.

In Figure 2, we present a Venn diagram depicting the completion

lines that achieve an exact match with the ground truth. For the

sake of clarity, we have excluded the results of BM25 and kNN-LM

from the diagram since their outcomes closely resemble those of

ReACC and kNM-LM. The �ndings clearly illustrate that FT2Ra

outperforms other methods by generating a signi�cantly larger

number of unique code lines.

Performance. To evaluate FT2Ra’s performance, we measured

the average time required to predict a token. We did not compare

the line prediction time since the predictions of di�erent meth-

ods can have di�erent lengths. Speci�cally, we selected 1,000 line-

completion tasks at random, using di�erent methods to predict the

line with a set length of 100 tokens. We then recorded the aver-

age token prediction time for comparison. All experiments were

conducted on a single A5000 GPU card for consistency.

Table 3 presents the results. Note that the time used by FT2Ra

is from its seven retrieval iterations. On the CodeGPT model, the
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Figure 3: Results of token-level completion on �ne-tuned

models with di�erent epochs.

average prediction times for the original model, BM25, ReACC,

kNN-LM, kNM-LM, and FT2Ra are 0.0163s, 0.0161s, 0.0164s, 0.0208s,

0.0193s, and 0.0271s, respectively, and a similar trend is observed

with UniXcoder. The results indicate that while input retrieval

methods slightly impact prediction speed, output retrieval meth-

ods, which require more computation, tend to slow it down more

noticeably. Compared to other output retrieval baselines, FT2Ra,

which retrieves more detailed information and allows for multiple

retrieval rounds, takes slightly longer. This represents a trade-o�

between e�ectiveness and e�ciency, with FT2Ra sacri�cing some

speed for signi�cant improvements in e�ectiveness.

Answers to RQ1: The results reveal FT2Ra’s dominant perfor-

mance on pre-trained models over existing baselines in both

token-level and line-level completions.

5.2 RQ2: Comparison with Fine-tuning

The key insight of FT2Ra lies an innovative approach that emulates

the �ne-tuning process with certain approximations (refer to Sec-

tion 3.1). Hence, we compared the results of FT2Ra with genuine

�ne-tuning results on the kNM-LM dataset. We utilized the training

data from all ten projects to �ne-tune the pre-trained models and

subsequently evaluated the methodologies on all test data of these

projects. The pre-trained models were �ne-tuned over a range of

epochs. We compared the performance of various methods for both

line-level and token-level completion, with the models �ne-tuned

across these di�erent epochs.

Token-level Completion. For the token-level completion, we

capped the maximum number of epochs at 20. This upper limit was

chosen because it was observed that most methods tend to reach

convergence within this period. Figure 3 presents the token-level

completion performance of di�erent methods on �ne-tuned models

over various epochs. Notably, the comparative results at each point

are derived by the retrieval from the respective �ne-tuned models

at speci�c epochs (i.e., epochs 1, 2, . . . , 20). The data stores are also

updated under di�erent �ne-tuned models. The results for epoch 0

are derived from the pre-trained model without �ne-tuning.

Overall, we observe a progressive improvement in the perfor-

mance of the original model with an increasing number of �ne-

tuning epochs (see blue lines). The results of the retrieval-based

methods also exhibit an upward trend, showing the generalization

capability across di�erent �ne-tunedmodels. However, as themodel

goes through multiple �ne-tuning epochs, the improvements are

Figure 4: Results of line-level completion.

diminishing as the model nears its best performance after su�cient

tuning. Comparing FT2Ra to the baselines, it is clear that FT2Ra

consistently outperforms the baselines on �ne-tuned models.

To assess how closely FT2Ra’s e�ect (simulating �ne-tuning)

aligns with real �ne-tuning, we compare FT2Ra’s performance

on the pre-trained model without any �ne-tuning to that of the

�ne-tuned models. As indicated by the dotted line, FT2Ra, with-

out �ne-tuning the model, achieves similar performance to �ne-

tuned CodeGPT and UniXcoder models after approximately 4 and

7 epochs, respectively. In contrast, the best baseline, kNM-LM, only

reaches a similar performance level with a model �ne-tuned for

about one epoch. These results underscore the value of our theo-

retical analysis from the �ne-tuning process.

Line-level Completion. Figure 4 illustrates the results in terms of

EM for line-level completion. Due to space constraints, the results

for Edit Similarity can be accessed on ourwebsite [3].We capped the

maximum number of epochs at 10 due to the large computational

overhead of line-based completion. When compared to the token-

level completion results in Figure 3, it becomes evident that the

impact of other baseline methods is notably diminished in line-level

completion, primarily because this task is more di�cult. We observe

that BM25 and ReACC yield similar results, likely due to their

adoption of similar methods. On the other hand, the performance

of kNN-LM and kNM-LM is very close to that of the �ne-tuned

models, which indicates that they have limited improvement.

Conversely, FT2Ra continues to demonstrate clear advantages

over other methods, due to its precise token prediction. Notably,

when comparing the performance of FT2Ra at epoch 0 with that

of other �ne-tuned models, it becomes apparent that even without

�ne-tuning, FT2Ra can outperform the performance of �ne-tuned

models at 10 epochs.

Answers to RQ2: FT2Ra remains highly e�ective when applied

to �ne-tuned models. Furthermore, our results indicate that

FT2Ra yields promising outcomes even without �ne-tuning,

achieving competitive or superior performance compared to

�ne-tuned models with multiple epochs.

5.3 RQ3: Impact of Weighting Strategy and the
Number of Neighbors

To evaluate the e�ectiveness of our weighting strategy and to un-

derstand the impact of the number of neighbours, we collected four

datasets, including the two Java projects that were randomly chosen

from the kNM-LM dataset, and the two datasets from CodeXGLUE.
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Table 4: Results with di�erent weighting strategies and dif-

ferent numbers of neighbors (%).

Dataset
Weighting Strategy #Neighbors

Rec. Uni. Smax Smax-T 5 10 20 50

Rest. 78.15 74.62 78.43 78.46 78.69 78.65 78.15 76.79

Eureka 70.65 68.80 67.12 66.84 69.38 70.14 70.65 69.79

JavaCorpus 72.07 71.97 67.98 68.15 70.58 71.40 72.07 72.46

PY150 62.19 61.17 56.85 56.94 60.93 61.69 62.19 61.93

The evaluation is performed on the token-level completion task,

which serves as the foundation for line-level completion.

5.3.1 E�ectiveness of the weighting strategy. Since various base-

line methods employ di�erent weighting strategies to determine

the signi�cance of the retrieved samples. For instance, kNN-LM

utilizes the softmax (referred to as Smax), whereas kNM-LM em-

ploys softmax with temperate (denoted as Smax-T ). Our method

calculates weights based on distance, referred to as Rec. (see Equa-

tion 15). To provide a comparative evaluation, we incorporated

these strategies into FT2Ra for the comparisons. Additionally, we

introduced a baseline, i.e., uniform strategy (Uni.), which allocates

equal weights to all samples. Detailed results can be found on the

left of Table 4. Obviously, the weighting strategy Rec. outperforms

other strategies when they are adopted to FT2Ra. An exception is

the results on Rest., where Smax and Smax-T marginally exceed

the performance of FT2Ra. Interestingly, the uniform strategy Uni.

excels over the other two methods for the benchmark JavaCorpus

and PY150, emphasizing the importance of designing a suitable

weighting strategy.

5.3.2 Impact of the number of neighbours. We evaluated the per-

formance of FT2Ra by setting the number of neighbors to 5, 10,

20, and 50. The �ndings, as presented in the right part of Table 4,

suggest that FT2Ra exhibits relatively limited sensitivity to the num-

ber of neighbours chosen. There is not a single optimal parameter

that is universally e�ective across all datasets. In general, selecting

too few neighbours may not provide enough information to aug-

ment predictions. Conversely, selecting an excessive number might

introduce negative e�ects, such as the interference of irrelevant

neighbours.

Answers to RQ3: Our weighting strategy is useful in enhancing

the performance of FT2Ra. Moreover, FT2Ra generally exhibits

limited sensitivity to changes in the number of neighbours.

5.4 RQ4: Usefulness of Multiple Iterations

To evaluate the e�ect of the multiple iteration strategy incorporated

into FT2Ra, we con�gured FT2Ra with varying retrieval iterations

(i.e., � in Algo. 1) ranging from 1 to 10. We also consider the impact

of the parameter [;>68CB , which are con�gured with 4 values: 2.5, 5,

10, and 20. Evaluationswere carried out using similar con�gurations

as in RQ3, i.e., token-level completion on pre-trained models.

The results are presented in Figure 5. It is obvious that FT2Ra’s

performance bene�ts from multiple retrieval rounds, which is a

unique feature compared to existing retrieval-based baselines. By in-

creasing the number of retrieval rounds, the performance of FT2Ra

gradually gets better. From the results, we found that the perfor-

mance of FT2Ra tends to stabilize after approximately 4 retrieval

iteration cycles.

Figure 5: Results with di�erent numbers of iterations.

With respect to di�erent learning rates (i.e., [;>68CB ), FT2Ra’s per-

formance shows high sensitivity to this parameter. In general, larger

values of [;>68CB enable FT2Ra to converge faster, whereas smaller

ones necessitate multiple iterations. For instance, with [;>68CB set to

0.5, convergence tends to be achieved after 10 iterations. In contrast,

a setting of 4 for [;>68CB reaches optimal performance after just one

iteration. Yet, we also observed that excessively high learning rates

could hamper FT2Ra’s performance. For instance, settings of [;>68CB
at 2 and 4 typically yield results inferior to those achieved with 0.5

and 1. The con�guration using a value of 4 for [;>68CB achieves the

poorest performance. The learning rate in FT2Ra shows a similar

e�ect to the learning rate of real training.

Evenwith just one iteration, FT2Ra surpasses the best-performing

baseline, kNM-LM, as shown by the straight line in Figure 5. A

higher learning rate, (e.g., [;>68CB = 10), is typically needed for

faster convergence. Under this setting, FT2Ra outperforms kNM-

LM in Rest., EureKa, and JavaCorpus. In PY 150, FT2Ra exceeds

kNM-LM’s performance after only 2 epochs. These results further

highlight FT2Ra’s e�ectiveness, even with no or a few iterations.

While automatically selecting optimal parameters for learning

rate and number of iterations can be challenging, there are some

general guidelines that can aid in this process. Conducting initial

trials on a small test set allows for the assessment of the model’s

performance. If the model exhibits rapid oscillation and a decline

in performance, it suggests that the learning rate is too high. Con-

versely, if the model fails to converge after many iterations, it

implies that the learning rate is too low. To adjust the number of it-

erations, early stopping techniques can be employed, ensuring that

the tuning process is both computationally e�cient and completed

within a reasonable timeframe.

Answers to RQ4: The multiple iteration strategy is useful in

improving FT2Ra’s performance. In general, the more rounds,

the better the results. Moreover, FT2Ra shows sensitivity to the

learning rate parameter, [;>68CB . Smaller values tend to yield

superior results, but they require a greater number of iterations

for convergence.
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6 THREATS TO VALIDITY

Potential biases from our choices of models and datasets represent

a possible threat to our study. To mitigate it, we have followed the

recent works [47] for guidance and selected two prominent datasets,

i.e., the kNM-LM datasets and the CodeXGLUE benchmarks, and

twowidely-used pre-tainedmodels, speci�cally CodeGPT andUniX-

coder. We also plan to evaluate FT2Ra on the large models such as

CodeLLama and CodeGen in future work. Furthermore, we were un-

able to establish a concrete theoretical framework to determine the

weighting strategy. Instead, we empirically evaluated four common

strategies in RQ3 and selected the most e�ective one. We acknowl-

edge the signi�cance of the weighting strategy and intend to inves-

tigate it further in future research. Another potential threat to our

study is that the approximations inherent in retrieval-augmented

methods may a�ect the precision of the results. This is particularly

relevant when applying these methods to new models or datasets,

where the impact of approximations might be more pronounced.

In line with [47], there is a threat to the use of ReACC on Java

programs. The original authors only made their retrieval models

for Python available, leaving the Java version undisclosed. To cir-

cumnavigate this obstacle during our Java experiments, we utilized

their Python version. In parallel, we incorporated the BM25 model,

which has a similar performance to ReACC. For transparency, we

have made our entire codebase, datasets, and experimental results

public, thereby enabling independent veri�cation.

7 RELATED WORK

Code Completion. Code completion is regarded as a vital as-

pect of enhancing software development e�ciency in contempo-

rary Integrated Development Environments (IDEs). Hindle [16]

were pioneers in employing N-gram techniques to implement code

completion using language models. Subsequently, deep neural net-

works [30] and pre-training techniques [12, 33, 34, 48] have been

made great progress. While some of these e�orts involve encod-

ing code-speci�c structured information like Abstract Syntax Tree

(AST) into inputs [25, 28], the prevailing trend in current research

treats source code as sequences of code tokens, as exempli�ed by

models like CodeGPT [37], and UniXcoder [13]. The advent of large

language models like ChatGPT [39], CodeGen [38], StarCoder [29]

has introduced new opportunities and challenges to code com-

pletion. large models entail a vast number of parameters, which

signi�cantly elevates the cost of �ne-tuning. Therefore, research

on retrieval-based enhancement is essential in this context.

Retrieval-augment Language Model. Retrieval-augmented tech-

niques [15, 21, 31, 32, 45] are primarily categorized into two types:

one being retrieval enhancement applied to inputs, also referred to

as pre-task retrieval. This category encompasses techniques such

as REACC [36], REDCODER [40] and DPR [23] as discussed in pre-

vious works. These retrieval techniques necessitate the preliminary

segmentation of the data to be retrieved into �xed-length chunks,

with each chunk typically containing several hundred tokens. They

concatenated the most relevant information to the inputs for the

enhancement. Some works go beyond simply retrieving from the

original training set, they re�ne new information from the original

training dataset. ASAP [5], in the task of code summarization, uses

not just the conventional source code and summary as input but

also incorporates static analysis products such as the repository

name, the fully quali�ed name of the target function, its signature

and its data �ow graph. RLPG [46] is proposed for single-line code

auto-completion in an IDE. RLPG not only retrieves similar content

as supplemental input but also utilizes repository-level code context

such as Post Lines, Identi�ers, Type Identi�ers as additional input

prompts. Joshi et al. [22] proposes a multi-lingual program repair

method named RING. It retrieves relevant buggy-�x examples from

an example bank, using the completed bug repair and repair meth-

ods as supplemental input prompts. On the other hand, some works

also try to focus on retrieval enhancement for outputs such as kNN-

LM [24, 52], kNM-LM [47], and RETRO [8]. This kind of retrieval

paradigm involves the preliminary creation of a retrieval database,

where information from this database is utilized to modify the out-

put generated. For example, RETRO [8] integrates it within the

Transformer, while kNN-LM [24, 52] employ probability interpola-

tion at the �nal probability layer. Compared with these works, we

develop a novel retrieval-based approach from theoretical analysis

to mimic genuine �ne-tuning for code completion.

8 CONCLUSION

In this paper, we introduce a novel retrieval augmentation method

for code completion tasks. Guided by a theoretical analysis, we

discerned the value of Δ;>68CB as a pivotal retrieval metric. Building

on this revelation, we designed FT2Ra, a method that is to simu-

late the �ne-tuning process closely. Similarly, FT2Ra incorporates a

learning rate and a multi-round iteration strategy, aiming to mirror

the results of genuine �ne-tuning. The experimental results demon-

strated FT2Ra’s superiority against state-of-the-art methods and its

competitive results with regards to �ne-tuning.

9 DATA AVAILABILITY

Our source code and experimental data are available at [3].
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